日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a為給定的正實(shí)數(shù),m為實(shí)數(shù),函數(shù)f (x)=ax3-3(m+a)x2+12mx+1.

          (Ⅰ)若f(x)在(0,3)上無(wú)極值點(diǎn),求m的值;

          (Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.

           

          【答案】

          (Ⅰ)a;(Ⅱ)m≤或m≥

          【解析】

          試題分析:(Ⅰ) 求原函數(shù)的導(dǎo)函數(shù),則導(dǎo)函數(shù)恒大于等于0,即可得所求;(Ⅱ)由(Ⅰ)知導(dǎo)函數(shù)時(shí)等于0,則為函數(shù)的極值,要使有最值,再看導(dǎo)函數(shù)為0時(shí)的另外一個(gè)根的范圍,然后分情況討論:①時(shí),顯然為最值;②時(shí),先求(0,3)上的極值,然后再與端點(diǎn)函數(shù)值比較滿足題意求m;③時(shí),先求(0,3)上的極值,然后再與端點(diǎn)函數(shù)值比較滿足題意求m,綜合①②③可得m的取值范圍.

          試題解析:(Ⅰ)由題意得f′(x)=3ax2-6(m+a)x+12m=3(x-2)(ax-2m),

          由于f(x)在(0,3)上無(wú)極值點(diǎn),故=2,所以m=a.                         5分

          (Ⅱ)由于f′(x)=3(x-2)(ax-2m),故

          (i)當(dāng)≤0或≥3,即m≤0或m≥a時(shí),

          取x0=2即滿足題意.此時(shí)m≤0或m≥a.

          (ii)當(dāng)0<<2,即0<m<a時(shí),列表如下:

          x

          0

          (0,)

          (,2)

          2

          (2,3)

          3

          f ′(x)

           

          0

          0

           

          f (x)

          1

          單調(diào)遞增

          極大值

          單調(diào)遞減

          極小值

          單調(diào)遞增

          9m+1

          故f(2)≤f(0)或f()≥f(3),

          即-4a+12m+1≤1或+1≥9m+1,

          即3m≤a或≥0,

          即m≤或m≤0或m=.此時(shí)0<m≤

          (iii)當(dāng)2<<3,即a<m<時(shí),列表如下:

          x

          0

          (0,2)

          2

          (2,)

          (,3)

          3

          f ′(x)

           

          0

          0

           

          f(x)

          1

          單調(diào)遞增

          極大值

          單調(diào)遞減

          極小值

          單調(diào)遞增

          9m+1

          故f()≤f(0)或f(2)≥f(3),

          +1≤1或-4a+12m+1≥9m+1,

          ≤0或3m≥4a,

          即m=0或m≥3a或m≥

          此時(shí)≤m<

          綜上所述,實(shí)數(shù)m的取值范圍是m≤或m≥.               14分

          考點(diǎn):1、導(dǎo)函數(shù)的性質(zhì);2、利用導(dǎo)函數(shù)求極值;3、分類討論法.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          ax3+x2,x<1
          blnx  ,x≥1
          ,函數(shù)f(x)在x=
          2
          3
          處取得極值.
          (1)求實(shí)數(shù)a的值;
          (2)若b≤2,t<0,函數(shù)f(x)在[t,e](e為自然對(duì)數(shù)的底數(shù))上的最大值為2,求實(shí)數(shù)t的取值范圍;
          (3)對(duì)任意給定的正實(shí)數(shù)b,曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•藍(lán)山縣模擬)已知函數(shù)f(x)=
          -x3+x2+bx+c,(x<1)
          alnx,(x≥1)
          和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
          (1)求實(shí)數(shù)b,c的值;
          (2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
          (3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          x3+x2(x<1)
          alnx(x≤1)

          (Ⅰ)求f(x)在[-1,e](e為自然對(duì)數(shù)的底數(shù))上的最大值;
          (Ⅱ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          -x3+x2+bx+c(x<1)
          alnx(x≥1)
          ,的圖象過(guò)點(diǎn)(-1,2),且在點(diǎn)(-1,f(-1))處的切線與直線x-5y+1=0垂直.
          (1)求實(shí)數(shù)b,c的值;
          (2)若P,Q是曲線y=f(x)上的兩點(diǎn),且△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,此三角形斜邊的中點(diǎn)在y軸上,則對(duì)任意給定的正實(shí)數(shù)a,滿足上述要求的三角形有幾個(gè)?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案