日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點(diǎn)F,過(guò)原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2
          2
          ,|AB|最小值為2.
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)若圓:x2+y2=
          2
          3
          的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問(wèn):OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.
          分析:(Ⅰ)設(shè)A(x0,y0)B(-x0,y0)F(c,0)(c2=a2+b),由橢圓定義及|AF|+|BF|=2
          2
          可求a,而
          |AB|=
          (2x0)2+(2y0)2
          =2
          x02+(1-
          x02
          a2
          )b2
          =2
          b2+
          c2x02
          a2
          可求b,進(jìn)而可求橢圓方程
          (Ⅱ)由題設(shè)條件可知直線的斜率存在,設(shè)直線L的方程為y=kx+m,由L與圓x2+y2=
          2
          3
          相切,可得
          |m|
          1+k2
          =
          6
          3

          L的方程為y=kx+m代入
          x2
          2
          +y2=1
          中得:(1+2k2)x2+4kmx+2m2-2=0,△=8(2k2+1-m2)>0令P(x1,y1),
          Q(x2,y2),x1+x2=
          -4km
          1+2k2
          ,要證
          OP
          OQ
          ,只要證明
          OP
          OQ
          =0
          即可
          解答:解:(Ⅰ)設(shè)A(x0,y0)B(-x0,y0)F(c,0)(c2=a2+b)
          |AF|+|BF|=2a=2
          2
          ∴a=
          2
          -----------------------------------------(1分)|AB|=
          (2x0)2+(2y0)2
          =2
          x02+(1-
          x02
          a2
          )b2
          =2
          b2+
          c2x02
          a2

          ∵0≤x02≤a2∴|AB|min=2b=2∴b=1所以有橢圓E的方程為
          x2
          2
          +y2=1
          -----------------(5分)
          (Ⅱ)由題設(shè)條件可知直線的斜率存在,設(shè)直線L的方程為y=kx+m
          L與圓x2+y2=
          2
          3
          相切,
          |m|
          1+k2
          =
          6
          3

          m2=
          2
          3
          (k2+1)
          -----------------(7分)
          L的方程為y=kx+m代入
          x2
          2
          +y2=1
          中得:(1+2k2)x2+4kmx+2m2-2=0,
          △=8(2k2+1-m2)>0令P(x1,y1),Q(x2,y2),
          x1+x2=
          -4km
          1+2k2

          x1x2=
          2m2-2
          1+2k2

          y1y2=k2x1x2+km(x1+x2)+m2=
          m2-2k2
          1+2k2
          ③--------------------(10分)
          OP
          OQ
          =x1x2+y1y2=
          2m2-2
          1+2k2
          +
          m2-2k2
          1+2k2
          =
          3m2-2k2-2
          1+2k2
          =0

          OP
          OQ
          ------------------------------------------------------(12分)
          點(diǎn)評(píng):本題主要考查了由橢圓的性質(zhì)、定義求解橢圓的方程,直線與圓、橢圓的位置關(guān)系的應(yīng)用,解題中要求考試具備一定的邏輯推理、計(jì)算的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),焦點(diǎn)為F1、F2,雙曲線G:x2-y2=m(m>0)的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P是雙曲線G上異于頂點(diǎn)的任一點(diǎn),直線PF1、PF2與橢圓的交點(diǎn)分別為A、B和C、D,已知三角形ABF2的周長(zhǎng)等于8
          2
          ,橢圓四個(gè)頂點(diǎn)組成的菱形的面積為8
          2

          (1)求橢圓E與雙曲線G的方程;
          (2)設(shè)直線PF1、PF2的斜率分別為k1和k2,探求k1和k2的關(guān)系;
          (3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),以F1(-c,0)為圓心,以a-c為半徑作圓F1,過(guò)點(diǎn)B2(0,b)作圓F1的兩條切線,設(shè)切點(diǎn)為M、N.
          (1)若過(guò)兩個(gè)切點(diǎn)M、N的直線恰好經(jīng)過(guò)點(diǎn)B1(0,-b)時(shí),求此橢圓的離心率;
          (2)若直線MN的斜率為-1,且原點(diǎn)到直線MN的距離為4(
          2
          -1),求此時(shí)的橢圓方程;
          (3)是否存在橢圓E,使得直線MN的斜率k在區(qū)間(-
          2
          2
          ,-
          3
          3
          )內(nèi)取值?若存在,求出橢圓E的離心率e的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓E:
          x2
          a2
          +
          y2
          3
          =1
          (a
          3
          )的離心率e=
          1
          2
          .直線x=t(t>0)與曲線 E交于不同的兩點(diǎn)M,N,以線段MN 為直徑作圓 C,圓心為 C.
           (1)求橢圓E的方程;
           (2)若圓C與y軸相交于不同的兩點(diǎn)A,B,求△ABC的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•佛山二模)已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的一個(gè)交點(diǎn)為F1(-
          3
          ,0)
          ,而且過(guò)點(diǎn)H(
          3
          ,
          1
          2
          )

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T(mén).證明:線段OT的長(zhǎng)為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓E:
          x2
          a2
          +y2=1
          (a>1)的離心率e=
          3
          2
          ,直線x=2t(t>0)與橢圓E交于不同的兩點(diǎn)M、N,以線段MN為直徑作圓C,圓心為C
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)當(dāng)圓C與y軸相切的時(shí)候,求t的值;
          (Ⅲ)若O為坐標(biāo)原點(diǎn),求△OMN面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案