日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{ an}的前n項(xiàng)和為Sn=n2-5n+2,則數(shù)列{|an|}的前10項(xiàng)和為
          60
          60
          分析:根據(jù)等差數(shù)列的基本知識(shí)先求得等差數(shù)列{an}的通項(xiàng)公式,可知等差數(shù)列{an}的前2項(xiàng)為負(fù)數(shù),先求出-S2的值,可求得數(shù)列{|an|}的前10項(xiàng)的和.
          解答:解:∵Sn=n2-5n+2,
          當(dāng)n=1時(shí),a1=S1=-2
          當(dāng)n≥2時(shí),an=sn-sn-1=n2-5n+2-(n-1)2+5(n-1)-2=2n-6
          由an<0 得 n<3,即數(shù)列的前2項(xiàng)為負(fù),
          S10=|a1|+|a2|+…+|a10|
          =-a1-a2+a3+…+a10
          =s10-2(a1+a2)=52-2(-2-2)=60
          故答案為:60
          點(diǎn)評(píng):本題考查了等差數(shù)列通項(xiàng)公式的求法和前n項(xiàng)和的求法,解題時(shí)注意數(shù)列{an}的前6項(xiàng)為負(fù)數(shù),考查了學(xué)生的計(jì)算能力和對(duì)數(shù)列的綜合掌握,解題時(shí)注意整體思想和轉(zhuǎn)化思想的運(yùn)用,屬于基礎(chǔ)試題
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{
          anpn-1
          }
          的前n項(xiàng)和Sn=n2+2n(其中常數(shù)p>0),數(shù)列{an}的前n項(xiàng)和為Tn
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求Tn的表達(dá)式;
          (Ⅲ)若對(duì)任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列(an}滿足:a1=
          1
          2
          ,an+1=
          n+1
          2n
          an,數(shù)列{bn}滿足nbn=an(n∈N*).
          (1)證明數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式:
          (2)求數(shù)列{an}的前n項(xiàng)和Sn
          (3)在(2)的條件下,若集合{n|
          (n2+n)(2-Sn)
          n+2
          ≥λ,n∈N*}=∅.求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列(an}為Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
          (I)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn=(2n-1)an,求數(shù)列{bn}前n和Tn
          (Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且數(shù)列{cn}中的每一項(xiàng)總小于它后面的項(xiàng),求實(shí)數(shù)t取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{
          a
           
          n
          }
          的前n項(xiàng)和為Sn,且向量
          a
          =(n,Sn)
          ,
          b
          =(4,n+3)
          共線.
          (Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
          (Ⅱ)求數(shù)列{
          1
          nan
          }
          的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列數(shù)列{an}前n項(xiàng)和Sn=-
          1
          2
          n2+kn
          (其中k∈N*),且Sn的最大值為8.
          (Ⅰ)確定常數(shù)k并求{an}的通項(xiàng)公式;
          (Ⅱ)若bn=9-2an,求數(shù)列{
          1
          bnbn+1
          }
          前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案