日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知矩陣 ,若矩陣屬于特征值6的一個(gè)特征向量為,屬于特征值1的一個(gè)特征向量.

          1)求矩陣的逆矩陣;

          2)計(jì)算

           

          【答案】

          1;2

          【解析】

          試題分析:1)因?yàn)橐阎仃?/span> ,若矩陣屬于特征值6的一個(gè)特征向量為,屬于特征值1的一個(gè)特征向量.通過特征向量與特征值的關(guān)系,可求矩陣A中的相應(yīng)參數(shù)的值,再通過逆矩陣的含義可求出矩陣A的逆矩陣.同樣可以從通過特征根的方程方面入手,求的結(jié)論.

          2)因?yàn)橄蛄?/span>可由向量及向量表示,所以即可轉(zhuǎn)化為矩陣A的特征向量來表示.即可求得結(jié)論.同樣也可以先求出A3,再運(yùn)算即可.

          試題解析:(1)法一:依題意,..

          所以

          法二:的兩個(gè)根為61,

          d=4,c=2. 所以-

          (2)法一:=2

          A3=2×6313=

          法二:

          A3=

          考點(diǎn):1.矩陣的性質(zhì).2.矩陣的運(yùn)算.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2010年福建省廈門外國語學(xué)校高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

          (選修4-2:矩陣與變換)
          已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=
          ①求矩陣A;②求直線y=x+2在矩陣A的作用下得到的曲線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇北老四所縣中高三(下)第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

          (選修4-2:矩陣與變換)
          已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=.求矩陣A,并寫出A的逆矩陣.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009年江蘇省南通市啟東中學(xué)高三5月考前輔導(dǎo)特訓(xùn)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          選修4-2:矩陣與變換
          已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=.求矩陣A,并寫出A的逆矩陣.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年江蘇省南京市金陵中學(xué)、海安中學(xué)高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

          選修4-2:矩陣與變換
          已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=.求矩陣A,并寫出A的逆矩陣.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)預(yù)測(cè)試卷(2)(解析版) 題型:解答題

          選修4-2:矩陣與變換
          已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=.求矩陣A,并寫出A的逆矩陣.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案