日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設f(x)是定義在R上的增函數(shù),令g(x)=f(x)-f(2010-x)
          (1)求證g(x)+g(2010-x)時定值;
          (2)判斷g(x)在R上的單調性,并證明;
          (3)若g(x1)+g(x2)>0,求證x1+x2>2010.

          解:(1)∵g(x)=f(x)-f(2010-x),
          ∴g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0為定值.
          (2)g(x)在R上的增函數(shù),設x1<x2,則2010-x1>2010-x2,
          ∵f(x)是R上的增函數(shù)∴f(x1)<f(x2),f(2010-x1)>f(2010-x2
          故g(x1)-g(x2)=f(x1)-f(2010-x1)-f(x2)+f(2010-x2)=[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)]<0,
          即g(x1)<g(x2),∴g(x)在R上的增函數(shù).
          (3)假設x1+x2≤2010,則x1≤2010-x2 ,故g(x1)≤g(2010-x2),
          又g(2010-x2)=-g(x2),
          ∴g(x1)+g(x2)≤0,這與已知g(x1)+g(x2)>0矛盾,
          ∴x1+x2>2010.
          分析:(1)利用條件化簡g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0,顯然為定值.
          (2)f(x)在R上的增函數(shù),設x1<x2,化簡(x1)-g(x2)為[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)],小于0,從而得到g(x)在R上的增函數(shù).
          (3)用反證法證明,假設x1+x2≤2010,利用g(x)在R上的增函數(shù)推出g(x1)+g(x2)≤0,這與已知g(x1)+g(x2)>0矛盾,從而應有x1+x2>2010.
          點評:本題主要考查函數(shù)的單調性的判斷和證明,函數(shù)的單調性的應用,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          3、設f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
          -2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設f(x)是定義在R上的奇函數(shù),且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
          1
          2
           )=2
          ,則f(1)+f(
          3
          2
          )+f(2)+f(
          5
          2
          )+f(3)+f(
          7
          2
          )
          =
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
          A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

          查看答案和解析>>

          同步練習冊答案