日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,已知E為棱CC1上的動點(diǎn).
          (1)求證:A1E⊥BD;
          (2)是否存在這樣的E點(diǎn),使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點(diǎn);若不存在,請說明理由.

          【答案】
          (1)證明:連接AC,設(shè)AC∩DB=O,連接A1O,OE.

          ∵A1A⊥底面ABCD,∴A1A⊥BD,又BD⊥AC,

          ∴BD⊥平面ACEA1,∵A1E平面ACEA1,

          ∴A1E⊥BD


          (2)解:當(dāng)E是CC1的中點(diǎn)時,平面A1BD⊥平面EBD.

          證明如下:

          ∵A1B=A1D,EB=ED,O為BD中點(diǎn),∴A1O⊥BD,EO⊥BD

          ∴∠A1OE為二面角A1﹣BD﹣E的平面角.

          在正方體ABCD﹣A1B1C1D1中,設(shè)棱長為2a,

          ∵E為棱CC1的中點(diǎn),由平面幾何知識,EO= a,A1O= a,A1E=3a,

          ∴A1E2=A1O2+EO2,即∠A1OE=90°.

          ∴平面A1BD⊥平面EBD


          【解析】(1)連接AC,設(shè)AC∩DB=O,連接A1O,OE.證明A1A⊥BD,BD⊥AC,推出BD⊥平面ACEA1 , 然后證明A1E⊥BD.(2)當(dāng)E是CC1的中點(diǎn)時,平面A1BD⊥平面EBD.說明∠A1OE為二面角A1﹣BD﹣E的平面角.設(shè)棱長為2a,推出∠A1OE=90°.即可證明平面A1BD⊥平面EBD.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的性質(zhì)的相關(guān)知識,掌握垂直于同一個平面的兩條直線平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2),當(dāng)x∈[0,2)時,f(x)=﹣x2+2x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N* , 且{an}的前n項(xiàng)和為Sn , 則Sn的取值范圍是( )
          A.[1,
          B.[1, ]
          C.[ ,2)
          D.[ ,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙、丁四個物體同時從某一點(diǎn)出發(fā)向同一個方向運(yùn)動,其路程 關(guān)于時間 的函數(shù)關(guān)系式分別為 , , ,有以下結(jié)論:
          ①當(dāng) 時,甲走在最前面;
          ②當(dāng) 時,乙走在最前面;
          ③當(dāng) 時,丁走在最前面,當(dāng) 時,丁走在最后面;
          ④丙不可能走在最前面,也不可能走在最后面;
          ⑤如果它們一直運(yùn)動下去,最終走在最前面的是甲.
          其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)食堂定期從糧店以每噸1500元的價格購買大米,每次購進(jìn)大米需支付運(yùn)輸費(fèi) 100元.食堂每天需用大米l噸,貯存大米的費(fèi)用為每噸每天2元(不滿一天按一天計),假 定食堂每次均在用完大米的當(dāng)天購買.
          (1)該食堂隔多少天購買一次大米,可使每天支付的總費(fèi)用最少?
          (2)糧店提出價格優(yōu)惠條件:一次購買量不少于20噸時,大米價格可享受九五折(即原價的95%),問食堂可否接受此優(yōu)惠條件?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,a、b是方程x2﹣2 +2=0的兩根,且2cos(A+B)=﹣1
          (1)求角C的度數(shù);
          (2)求c;
          (3)求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
          (1)直線PQ與CD所成角的大小
          (2)四面體PCDQ的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列{an}中,已知a1=2,an+1=4an﹣3n+1,n∈N
          (1)設(shè)bn=an﹣n,求證:數(shù)列{bn}是等比數(shù)列;
          (2)求數(shù)列{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一塊半徑為 是正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池 和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰 ,其中 為圓心, , 在圓的直徑上, , 在半圓周上,如圖.設(shè) ,征地面積為 ,當(dāng) 滿足 取得最大值時,開發(fā)效果最佳,開發(fā)效果最佳的角 的最大值分別為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)M=10a2+81a+207,P=a+2,Q=26﹣2a,若將lgM,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列{an}的前三項(xiàng). (Ⅰ)求a的值及{an}的通項(xiàng)公式;
          (Ⅱ)記函數(shù) 的圖像在x軸上截得的線段長為bn , 設(shè) ,求Tn

          查看答案和解析>>

          同步練習(xí)冊答案