日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), ,其中, .

          1)當(dāng)時,求在點(diǎn)處切線的方程;

          2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          3)記,求證: .

          【答案】(1);(2);(3)證明見解析.

          【解析】試題分析:1根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,即可寫出切線;2根據(jù)單調(diào)遞增可知函數(shù)導(dǎo)數(shù)在上大于等于零恒成立,分離參數(shù)即可求出a的取值范圍;(3)寫出,求導(dǎo)數(shù),利用導(dǎo)數(shù)求其最小值即可證明.

          試題解析:

          1)解:當(dāng)時, ,

          ,此時切點(diǎn)為,

          的方程為

          2解:,函數(shù)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立,

          上恒成立,則,

          ,則,當(dāng)時,

          ,

          3證明:,則

          ,

          ,

          ,則

          顯然在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,則,

          ,則

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(
          A.
          B.y=ex
          C.y=lg|x|
          D.y=﹣x2+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于兩個定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
          (1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
          (2)若h(x)=2x2+3x﹣1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
          (3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1”生成一個函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點(diǎn)Q的坐標(biāo)是 ,求 的值;
          (Ⅱ)設(shè)函數(shù) ,求f(α)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一塊半徑為2的半圓形紙片,計劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,設(shè)CD=2x,梯形ABCD的周長為y.
          (1)求出y關(guān)于x的函數(shù)f(x)的解析式;
          (2)求y的最大值,并指出相應(yīng)的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC= BC=a,E是BC的中點(diǎn),將△BAE沿著AE翻折成△B1AE,使面B1AE⊥面AECD,F(xiàn),G分別為B1D,AE的中點(diǎn).

          (1)求三棱錐E﹣ACB1的體積;
          (2)證明:B1E∥平面ACF;
          (3)證明:平面B1GD⊥平面B1DC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐中,底面為菱形,且, 是邊長為的正三角形,且平面平面,點(diǎn)的中點(diǎn).

          (1)證明: 平面;

          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=1﹣ 在R上是奇函數(shù).
          (1)求a;
          (2)對x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實(shí)數(shù)s的取值范圍;
          (3)令g(x)= ,若關(guān)于x的方程g(2x)﹣mg(x+1)=0有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列選項(xiàng)中,說法正確的個數(shù)是( )

          ①命題“”的否定為“”;

          ②命題“在中, ,則”的逆否命題為真命題;

          ③設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的充分必要條件;

          ④若統(tǒng)計數(shù)據(jù)的方差為,則的方差為;

          ⑤若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)絕對值越接近1.

          A. 1個 B. 2個 C. 3個 D. 4個

          查看答案和解析>>

          同步練習(xí)冊答案