日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實數(shù)、、滿足,則稱接近.

          (1)若比3接近0,求的取值范圍;

          (2)對任意兩個不相等的正數(shù)、,證明:接近;

          (3)已知函數(shù)的定義域.任取,等于中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

          解析:(1) xÎ(-2,2);
          (2) 對任意兩個不相等的正數(shù)a、b,有,
          因為,
          所以,即a2b+ab2a3+b3接近;
          (3) ,kÎZ,
          f(x)是偶函數(shù),f(x)是周期函數(shù),最小正周期T=p,函數(shù)f(x)的最小值為0,
          函數(shù)f(x)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,kÎZ.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若實數(shù)、滿足,則稱接近.

          (1)若比3接近0,求的取值范圍;

          (2)對任意兩個不相等的正數(shù),證明:接近;

          (3)已知函數(shù)的定義域.任取,等于中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:黑龍江省09-10學(xué)年高二下學(xué)期期末考試(數(shù)學(xué)理)doc 題型:解答題

          (本小題滿分12分)

          若實數(shù)、、滿足,則稱接近。例如:,則3比6接近4。請證明:對任意兩個不相等的正數(shù)、, 接近

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

          (本題滿分12分)若實數(shù)、滿足,則稱接近.

          (1)若比3接近0,求的取值范圍;

          (2)對任意兩個不相等的正數(shù)、,證明:接近

          (3)已知函數(shù)的定義域.任取,等于中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

           [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

          若實數(shù)、、滿足,則稱遠離.

          (1)若比1遠離0,求的取值范圍;

          (2)對任意兩個不相等的正數(shù),證明:遠離;

          (3)已知函數(shù)的定義域.任取,等于中遠離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

          23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

          已知橢圓的方程為,點P的坐標(biāo)為(-a,b).

          (1)若直角坐標(biāo)平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標(biāo);

          (2)設(shè)直線交橢圓、兩點,交直線于點.若,證明:的中點;

          (3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點的步驟,并求出使、存在的θ的取值范圍.

           

           

           

           


           [番茄花園1]22.

          查看答案和解析>>

          同步練習(xí)冊答案