日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=bx,g(x)=ax2+1,h(x)=ln(1+x2).(a,b∈R)
          (1)若M={x|f(x)+g(x)≥0},-1∈M,2∈M,z=3a-b,求z的取值范圍;
          (2)設F(x)=f(x)+h(x),且b≤0,試討論函數(shù)F(x)的單調(diào)性.
          分析:(1)原不等式f(x)+g(x)≥0即ax2+bx+1≥0,由-1∈M,2∈M得
          a-b+1≥0
          4a+2b+1≥0
          畫出不等式組所確定的可行域,利用線性規(guī)劃的方法即可求得z的取值范圍;
          (2)對F(x)求導數(shù)得F/(x)=
          2x
          1+x2
          +b=
          bx2+2x+b
          1+x2
          ,下面對字母b進行分類討論:當b=0時,F(xiàn)(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減;當b<0時,F(xiàn)(x)在(-∞,+∞)上單調(diào)遞減;當-1<b<0時,討論函數(shù)F(x)的單調(diào)性即可.
          解答:精英家教網(wǎng)解:(1)解:不等式f(x)+g(x)≥0即ax2+bx+1≥0
          由-1∈M,2∈M得
          a-b+1≥0
          4a+2b+1≥0
          ----------------(2分)
          畫出不等式組所確定的可行域如右圖示:作平行線族b=3a-z
          可見當a=-0.5,b=0.5時z有最小值,,zmin=-2--------------------(5分)
          ∴z的取值范圍為z≥-2.----------------------------------------(6分)
          (2)∵F(x)=bx+ln(1+x2
          F/(x)=
          2x
          1+x2
          +b=
          bx2+2x+b
          1+x2
          ----------------(8分)
          當b=0時,F/(x)=
          2x
          1+x2
          >0?x>0

          ∴F(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減;-----------------(9分)
          當b<0時,由bx2+2x+b=0的判別式△=4-4b2=0,得b=-1∴F′(x)≤0
          當b≤-1時,對x∈R恒成立
          ∴F(x)在(-∞,+∞)上單調(diào)遞減;-----------------------(10分)
          當-1<b<0時,由F′(x)>0得:bx2+2x+b>0
          解得:
          -1+
          1-b2
          b
          <x<
          -1-
          1-b2
          b

          由F′(x)<0可得:x>
          -1-
          1-b2
          b
          x<
          -1+
          1-b2
          b
          -----------------------(12分)
          ∴當-1<b<0時F(x)在(
          -1+
          1-b2
          b
          ,
          -1-
          1-b2
          b
          )
          上單調(diào)遞增,
          (-∞,
          -1+
          1-b2
          b
          )
          (
          -1-
          1-b2
          b
          ,+∞)
          上單調(diào)遞減.-------------------(14分)
          點評:本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性、簡單線性規(guī)劃的應用、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
          (1)求f(x);
          (2)若不等式(
          1
          a
          x+(
          1
          b
          x-m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=b•ax(a>0且a≠1),且f(k)=8f(k-3)(k≥4,k∈N*).
          (1)若b=8,求f(1)+f(2)+…+f(n)(n∈N*);
          (2)若f(1)、16、128依次是某等差數(shù)列的第1項,第k-3項,第k項,試問:是否存在正整數(shù)n,使得f(n)=2(n2-100)成立,若存在,請求出所有的n及b的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過A(1,
          1
          6
          ),B(3,
          1
          24
          )

          (1)試確定f(x)的解析式;
          (2)若不等式(
          1
          a
          )x+(
          1
          b
          )x
          ≤m在x∈(-∞,1]時恒成立,求實數(shù)m的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為l的直線與函數(shù)f(x)的圖象相切于(1,0)點.
          (Ⅰ)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
          (Ⅱ)當實數(shù)0<a<1時,討論g(x)=f(x)-(a+x)lnx+
          1
          2
          a
          x
          2
           
          的極值點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=b•ax(其中a,b為常量且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24),
          (1)試確定f(x);
          (2)若不等式(
          1
          a
          ) x+(
          1
          b
          ) x-m≤0在x∈[0,+∞)上恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習冊答案