日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•東城區(qū)二模)對于數(shù)列{an} (n=1,2,…,m),令bk為a1,a2,…,ak中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列2,1,3,7,5的創(chuàng)新數(shù)列為2,2,3,7,7.定義數(shù)列{Cn}:c1,c2,c3,…,cm是自然數(shù)1,2,3,…,m(m>3)的一個排列.
          (Ⅰ)當(dāng)m=5時,寫出創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列{Cn};
          (Ⅱ)是否存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有的數(shù)列{Cn},若不存在,請說明理由.
          分析:(Ⅰ)由題意可得,創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列 {Cn}有兩個.
          (Ⅱ)存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列.設(shè)數(shù)列{Cn} 的創(chuàng)新數(shù)列為{ en},若{ en}為等差數(shù)列,設(shè)其公差為d,經(jīng)過檢驗,當(dāng)d=0或1時,存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列.
          解答:解:(Ⅰ)由題意可得,創(chuàng)新數(shù)列為3,4,4,5,5的所有數(shù)列 {Cn}有兩個,即數(shù)列3,4,1,5,2;
          或數(shù)列3,4,2,5,1.  …(4分)
          (Ⅱ)存在數(shù)列{Cn},使它的創(chuàng)新數(shù)列為等差數(shù)列.
          設(shè)數(shù)列{Cn} 的創(chuàng)新數(shù)列為{ en},(n=1,2,3,4…,m),
          因為em 是 c1,c2,c3,…,cm 中的最大值,所以 em=m.
          由題意知,ek為 c1,c2,c3,…ck 中最大值,所以,ek≤ek+1,且 ek∈{1,2,3,…,m}.
          若{ en}為等差數(shù)列,設(shè)其公差為d,則d=ek+1-ek≥0 且d∈N.
          當(dāng)d=0 時,{ en}為常數(shù)列,又 em=m,所以數(shù)列{ en}為 m,m,…,m.
          此時數(shù)列{Cn}是首項為m的任意一個符合條件的數(shù)列.  …(8分)
          當(dāng)d=1時,因為em=m,所以數(shù)列{ en} 為1,2,…,m.
          此時,數(shù)列{cn} 為1,2,3,…,m.  …(10分)
          當(dāng)d≥2時,因為 em=e1+(m-1)d≥e1+(m-1)2=2m-2+e1,
          又m>3,e1 為正整數(shù),所以 em>m,這與 em=m 矛盾,所以此時{ en}不存在,即不存在{Cn}使得它的創(chuàng)新數(shù)列為公差d≥2的等差數(shù)列.…(13分)
          綜上,當(dāng)數(shù)列{Cn}為以m為首項的任意一個符合條件的數(shù)列,或{Cn}為數(shù)列1,2,3,…,m時,它的創(chuàng)新數(shù)列為等差數(shù)列.…(14分)
          點評:本題主要考查創(chuàng)新數(shù)列的定義,等差數(shù)列的定義和性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿足:An=
          F(n,2)
          F(2,n)
          (n∈N+),若對任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)已知函數(shù)f(x)=-
          12
          x2+2x-aex

          (Ⅰ)若a=1,求f(x)在x=1處的切線方程;
          (Ⅱ)若f(x)在R上是增函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)已知函數(shù)f(x)=x
          1
          2
          ,給出下列命題:
          ①若x>1,則f(x)>1;
          ②若0<x1<x2,則f(x2)-f(x1)>x2-x1;
          ③若0<x1<x2,則x2f(x1)<x1f(x2);
          ④若0<x1<x2,則
          f(x1)+f(x2)
          2
          <f(
          x1+x2
          2
          )

          其中,所有正確命題的序號是
          ①④
          ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)已知函數(shù)f(x)=(a+
          1
          a
          )lnx+
          1
          x
          -x(a>1).
          (l)試討論f(x)在區(qū)間(0,1)上的單調(diào)性;
          (2)當(dāng)a∈[3,+∞)時,曲線y=f(x)上總存在相異兩點P(x1,f(x1)),Q(x2,f (x2 )),使得曲線y=f(x)在點P,Q處的切線互相平行,求證:x1+x2
          6
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)設(shè)M(x0,y0)為拋物線C:y2=8x上一點,F(xiàn)為拋物線C的焦點,若以F為圓心,|FM|為半徑的圓和拋物線C的準(zhǔn)線相交,則x0的取值范圍是( 。

          查看答案和解析>>

          同步練習(xí)冊答案