日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,EP交圓于E、C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
          (1)求證:AB為圓的直徑;
          (2)若AC=BD,求證:.
          (1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

          試題分析:
          解題思路:(1)利用直徑所對(duì)的圓周角為直角,證明即可;(2)利用全等三角形即(1)結(jié)論證明.
          規(guī)律總結(jié):本題考查幾何證明中的直線與圓的位置關(guān)系,培養(yǎng)學(xué)生的觀察能力以及分析問(wèn)題的能力.
          試題解析:(1)因?yàn)镻D=PG,所以∠PDG=∠PGD.
          由于PD為切線,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,從而∠BDA=∠PFA.
          由于AF垂直EP,所以∠PFA=90°,于是∠BDA=90°,故AB是直徑.
          (2)連接BC,DC.

          由于AB是直徑,故∠BDA=∠ACB=90°,
          在Rt△BDA與Rt△ACB中,AB=BA,AC=BD,
          從而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.
          又因?yàn)椤螪CB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.
          由于
          于是ED是直徑,由(1)得ED=AB.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,圓O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交圓O于N,點(diǎn)是線段延長(zhǎng)線上一點(diǎn),連接PN,且滿足

          (Ⅰ)求證:是圓O的切線;
          (Ⅱ)若圓O的半徑為,OA=OM,求MN的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的離心率e=
          2
          且點(diǎn)P(3,
          7
          )
          在雙曲線C上.
          (1)求雙曲線C的方程;
          (2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2
          2
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知a是實(shí)數(shù),直線2x-y+5=0與直線x-y+a+4=0的交點(diǎn)不在橢圓x2+2y2=11上,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩點(diǎn)A(-2,0),B(2,0),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為-
          3
          4

          (Ⅰ)求點(diǎn)M的軌跡方程;
          (Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓(x-1)2+y2=r20<r<
          3
          2
          )相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,設(shè)點(diǎn)F1(-c,0)、F2(c,0)分別是橢圓C:
          x2
          a2
          +y2=1(a>1)
          的左、右焦點(diǎn),P為橢圓C上任意一點(diǎn),且
          PF1
          PF2
          最小值為0.
          (1)求橢圓C的方程;
          (2)設(shè)直線l1:y=kx+m,l2:y=kx+n,若l1、l2均與橢圓C相切,證明:m+n=0;
          (3)在(2)的條件下,試探究在x軸上是否存在定點(diǎn)B,點(diǎn)B到l1,l2的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)B坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖所示,是等腰三角形,是底邊延長(zhǎng)線上一點(diǎn),
          ,,則腰長(zhǎng)=        .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,直線AB、CD相交于O,因?yàn)椤?+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理根據(jù)是(  )

          A.同角的補(bǔ)角相等
          B.等角的余角相等
          C.同角的余角相等
          D.等角的補(bǔ)角相等

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,則BD的長(zhǎng)為_(kāi)_______,AB的長(zhǎng)為_(kāi)_______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案