日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)學(xué)公式成立”是“x(x-3)<0成立”的


          1. A.
            充分不必要條件
          2. B.
            必要不充分條件
          3. C.
            充要條件
          4. D.
            既不充分也不必要條件
          A
          分析:先分別解不等式,利用集合之間的關(guān)系,根據(jù)必要條件、充分條件與充要條件的定義加以判斷.
          解答:由題意,“成立”,即0<x<1;
          “x(x-3)<0成立”,即0<x<3;
          由于0<x<1時(shí),一定有0<x<3,反之不成立
          故“成立”是“x(x-3)<0成立”的充分不必要條件
          故選A.
          點(diǎn)評(píng):本題的考點(diǎn)是必要條件、充分條件與充要條件的判斷,主要考查利用定義判斷必要條件、充分條件與充要條件,關(guān)鍵是正確解不等式,從而得出集合之間的關(guān)系.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
          (2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,(x∈[-1,4])為[-1,4]上的“k階收縮函數(shù)”,則k的取值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對(duì)任意x1∈[a,b],都有f(x1)=c,且對(duì)任意x2∈D,當(dāng)x2∉[a,b]時(shí),f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
          (1)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說(shuō)明理由;
          (2)若函數(shù)g(x)=x+
          x2+2x+n
          是區(qū)間[-2,+∞)上的“平底型”函數(shù),求n的值.
          (3)設(shè)f(x)是(1)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          [選做題]本題包括A、B、C、D共4小題,請(qǐng)從這4小題中選做2小題,每小題10分,共20分.
          A.如圖,AD是∠BAD的角平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E、F兩點(diǎn).求證:EF∥BC.
          B.已知M=
          .
          1-2
          3-7
          .
          ,求M-1
          C.已知直線l的極坐標(biāo)方程為θ=
          π
          4
          (ρ∈R),它與曲線C
          x=1+2cosα
          y=2+2sinα
          (α為參數(shù))相較于A、B兩點(diǎn),求AB的長(zhǎng).
          D.設(shè)函數(shù)f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)對(duì)任意a,b∈R,且a≠0恒成立,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
          ①函數(shù)f(x)的定義域是[0,+∞);
          ②函數(shù)f(x)的值域是[-2,4);
          ③函數(shù)f(x)在[0,+∞)上是增函數(shù),分別探究下列小題:
          (1)判斷函數(shù)f1(x)=
          x
          -2(x≥0)及f2(x)=4-6•(
          1
          2
          x(x≥0)是否屬于集合A?并簡(jiǎn)要說(shuō)明理由;
          (2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說(shuō)明你的結(jié)論.
          (3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案