【題目】已知f(x)是定義在R上的函數,滿足f(x)=﹣f(﹣x),且當x<0時,f(x)=x ,則f(9)= .
科目:高中數學 來源: 題型:
【題目】中國古代數學家劉徽在《九章算術注》中,稱一個正方體內兩個互相垂直的內切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長寬高皆為八分之一正方體的邊長的倒四棱錐“等冪等積”,計算出牟合方蓋的體積,據此可知,牟合方蓋的體積與其外切正方體的體積之比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點,且滿足:①
與
(
為坐標原點)的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數
(單位:千冊)之間的關系,在印制某種書籍時進行了統(tǒng)計,相關數據見下表:
印刷冊數 | 2 | 3 | 4 | 5 | 8 |
單冊成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務.
①完成下表(計算結果精確到0.1);
印刷冊數 | 2 | 3 | 4 | 5 | 8 | |
單冊成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據市場調查,新需求量為8千冊(概率0.8)或10千冊(概率0.2),若印刷廠以每冊5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組中的兩個函數是同一函數的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
.
A.(1)
B.(2)
C.(3)
D.(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD,PC的中點
(1)求證:EF⊥平面PBC
(2)若直線PC與平面ABCD所成角為 ,點P在AB上的射影O在靠近點B的一側,求二面角P﹣EF﹣A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題,其中為真命題的是( ) ① ;②
;
③ ;④
.
A.①和②
B.②和③
C.③和④
D.①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=2py(p>0)與直線2x﹣y+1=0交于A,B兩點, ,點M在拋物線上,MA⊥MB.
(1)求p的值;
(2)求點M的橫坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函數f(x)的解析式;
(2)若函數g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函數g(x)的最值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com