日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,Rt△ABC的斜邊BC恰在x軸上,點B(-2,0),C(2,0)且AD為BC邊上的高.
          (I)求AD中點G的軌跡方程;
          (Ⅱ)若一直線與(I)中G的軌跡交于兩不同點M、N,且線段MN恰以點(-1,)為中點,求直線MN的方程;
          (Ⅲ)若過點(1,0)的直線l與(I)中G的軌跡交于兩不同點P、Q試問在x軸上是否存在定點E(m,0),使恒為定值λ?若存在,求出點E的坐標(biāo)及實數(shù)λ的值;若不存在,請說明理由.
          【答案】分析:(I)設(shè)G(x,y),則由,代入可求中點G的軌跡方程
          (Ⅱ由點(-1,)在橢圓內(nèi)部,可得直線MN與橢圓必有公共點,由,兩式相減,結(jié)合方程的根與系數(shù)關(guān)系可求直線MN的斜率k,從而可求直線直線MN的方程
          (Ⅲ)假定存在定點E(m,0),使恒為定值λ,由軌跡方程中的y≠0,故直線l不可能為x軸,可設(shè)直線l的方程為x=ky+1且設(shè)點P(x3,y3),Q(x4,y4),聯(lián)立x=ky+1代入(y≠0),由方程的根與系數(shù)關(guān)系可求,則,代入可求,若存在定點E(m,0)使為定值(λ與k值無關(guān)),則必有,從而 可求
          解答:解:(I)設(shè)G(x,y),則A(x,2y)而B(-2,0),C(2,0)


          (y≠0),即為中點G的軌跡方程
          (Ⅱ∵點(-1,)在橢圓內(nèi)部,
          ∴直線MN與橢圓必有公共點
          設(shè)點M(x1,y1),N(x2,y2),
          由已知x1≠x2,則有
          兩式相減,得=-(y1-y2)(y1+y2

          ∴直線MN的斜率k=1
          ∴直線MN的方程為4x-4y+5=0
          (Ⅲ)假定存在定點E(m,0),使恒為定值λ
          由于軌跡方程中的y≠0,故直線l不可能為x軸
          于是可設(shè)直線l的方程為x=ky+1且設(shè)點P(x3,y3),Q(x4,y4
          將x=ky+1代入(y≠0)得
          (k2+4)y2+2ky-3=0.
          顯然△=4k2+12(k2+8)>0

          ,

          =(1+k2)y3y4
          =
          若存在定點E(m,0)使為定值(λ與k值無關(guān)),則必有

          ∴在x軸上存在定點E(),恒為定值
          點評:本題主要考查了向量的數(shù)量積的坐標(biāo)表示的應(yīng)用,利用點差法求解直線方程,直線與拋物線的相交關(guān)系的應(yīng)用,方程的根與系數(shù)關(guān)系的應(yīng)用,屬于綜合應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個交點到橢圓兩焦點的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標(biāo)是
          3
          5
          ,點B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案