日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•虹口區(qū)三模)數(shù)列{an}滿足:an=
          (3-a)n-3(n≤7)
          an-6(n>7)
          且{an}是遞增數(shù)列,則實數(shù)a的范圍是( 。
          分析:根據(jù)題意,首先可得an通項公式,這是一個類似與分段函數(shù)的通項,結(jié)合分段函數(shù)的單調(diào)性的判斷方法,可得
          3-a>0
          a>1
          (3-a)×7-3<a8-6
          ;解可得答案.
          解答:解:根據(jù)題意,an=f(n)=
          (3-a)n-3,n≤7
          ax-6 ,n>7
          ;
          要使{an}是遞增數(shù)列,必有
          3-a>0
          a>1
          (3-a)×7-3<a8-6
          ;
          解可得,2<a<3;
          故選D.
          點評:本題考查分段函數(shù)的解析式求法及其圖象的作法、數(shù)列的函數(shù)特性、函數(shù)單調(diào)性的判斷與證明,{an}是遞增數(shù)列,必須結(jié)合f(x)的單調(diào)性進(jìn)行解題,但要注意{an}是遞增數(shù)列與f(x)是增函數(shù)的區(qū)別與聯(lián)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)三模)如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
          (Ⅰ)求證:CF⊥B1E;
          (Ⅱ)求三棱錐VB1-EFC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)三模)若a,b∈R,那么
          1
          a
          1
          b
          成立的一個充分非必要條件是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)三模)函數(shù)y=2x和y=x3的圖象的示意圖如圖所示,設(shè)兩函數(shù)的圖象交于點A(x1,y1),B(x2,y2),且x1<x2
          (1)設(shè)曲線C1,C2分別對應(yīng)函數(shù)y=f(x)和y=g(x),請指出圖中曲線C1,C2對應(yīng)的函數(shù)解析式.若不等式kf[g(x)]-g(x)<0對任意x∈(0,1)恒成立,求k的取值范圍;
          (2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)三模)已知數(shù)列{an}滿足a1=2,an+1=2(1+
          1
          n
          )2an

          (1)令bn=
          an
          n2
          ,求數(shù)列{bn}和{an}的通項公式;
          (2)設(shè)cn=(An2+Bn+C)•2n,試推斷是否存在常數(shù)A,B,C,使對一切n∈N*都有an=cn+1-cn成立?若存在,求出A,B,C的值;若不存在,說明理由;
          (3)對(2)中數(shù)列{cn},設(shè)dn=
          an
          cn
          ,求{dn}的最小項的值.

          查看答案和解析>>

          同步練習(xí)冊答案