日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將正方形ABCD沿對角線AC折成直二面角后,異面直線AB與CD所成角的大小是
          π
          3
          π
          3
          分析:取AC、BD、BC的中點依次為E、F、G,連接BD、EF、EG、FG,由三角形的中位線定理,可得FG∥CD,EG∥AB,再由異面直線夾角的定義,可得∠FGE為異面直線AB與CD所成的角,解三角形FGE,即可得到異面直線AB與CD所成角的大。
          解答:解:如下圖,取AC、BD、BC的中點依次為E、F、G,
          連接BD、EF、EG、FG,
          則FG∥CD,EG∥AB,
          故∠FGE為異面直線AB與CD所成的角(或其補角),
          設(shè)正方形的邊長為2個單位,則FG=1,EG=1,EF=1,
          從而∠FGE=
          π
          3
          ,
          故答案為:
          π
          3
          點評:本題考查的知識點是異面直線及其所成的角,其中利用三角形中位線定理,證明線FG∥CD,EG∥AB,結(jié)合異面直線夾角的定義,利用平移法構(gòu)造∠FGE為異面直線AB與CD所成的角,是解答本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
          2
          π
          3
          2
          π
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源:福州一中高三數(shù)學模擬試卷(一)(文科) 題型:013

          邊長為1的正方形ABCD沿對其角線BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線BC與平面ABD所成角的正弦值為

          [  ]

          A.

          B.

          C.

          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:填空題

          將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年四川省成都市石室中學高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年四川省成都市石室中學高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

          將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

          查看答案和解析>>

          同步練習冊答案