日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的等比數(shù)列.
          (1)若數(shù)列的前n項和為Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整數(shù)q的值;
          (2)在(1)的條件下,試問數(shù)列中是否存在一項bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項的和?請說明理由;
          (3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列中每一項都是數(shù)列中的項.
          【答案】分析:(1)由題意知,,所以由S3<a1004+5b2-2012,能求出整數(shù)q的值.
          (2)假設(shè)數(shù)列{bn}中存在一項bk,滿足bk=bm+bm+1+bm+2+…+bm+p-1,由,得到k≥m+p,另由bk>bm+p-1,得到k<m+p,矛盾.所以,這要的項bk不存在.
          (3)由b1=ar,得b2=b1q=arq=as=ar+(s-r)d,則,由此推導(dǎo)出bi一定是數(shù)列的項.
          解答:解:(1)由題意知,,
          所以由S3<a1004+5b2-2012,,…(3分).解得1<q<3,
          又q為整數(shù),所以q=2.…(5分)
          (2)假設(shè)數(shù)列{bn}中存在一項bk,滿足bk=bm+bm+1+bm+2+…+bm+p-1,
          因為
          (*)…(8分)

          =2m+p-2m<2m+p,所以k<m+p,此與(*)式矛盾.
          所以,這要的項bk不存在…(11分)
          (3)由b1=ar,得b2=b1q=arq=as=ar+(s-r)d,
          …(12分)
          ,
          從而
          因為as≠ar⇒b1≠b2,所以q≠1,ar≠0,
          .又t>s>r,且(s-r)是(t-r)的約數(shù),
          所以q是整數(shù),且q≥2…(14分)
          對于數(shù)列中任一項bi(這里只要討論i>3的情形),
          ==,
          由于(s-r)(1+q+q2+…+qi-2)+1是正整數(shù),
          所以bi一定是數(shù)列的項…(16分)
          點評:本題考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,解題時要認(rèn)真審題,注意等價轉(zhuǎn)化思想、分類討論思想的合理運用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的等比數(shù)列.
          (1)若數(shù)列的前n項和為Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整數(shù)q的值;
          (2)在(1)的條件下,試問數(shù)列中是否存在一項bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項的和?請說明理由;
          (3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列中每一項都是數(shù)列中的項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省吉安市高三最后一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分14分)已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的

              等比數(shù)列。

              (1)若數(shù)列的前n項和為,求整數(shù)q的值;

          (2)在(1)的條件下,試問數(shù)列中最否存在一項,使得恰好可以表示為該數(shù)列

               中連續(xù)項的和?請說明理由;

          (3)若,求證:數(shù)列

               中每一項都是數(shù)列中的項。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的等比數(shù)列.
          (1)若數(shù)列的前n項和為Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整數(shù)q的值;
          (2)在(1)的條件下,試問數(shù)列中是否存在一項bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項的和?請說明理由;
          (3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列中每一項都是數(shù)列中的項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011屆江西省吉安市中學(xué)高三最后一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分14分)已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的
          等比數(shù)列。
          (1)若數(shù)列的前n項和為,求整數(shù)q的值;
          (2)在(1)的條件下,試問數(shù)列中最否存在一項,使得恰好可以表示為該數(shù)列
          中連續(xù)項的和?請說明理由;
          (3)若,求證:數(shù)列
          中每一項都是數(shù)列中的項。

          查看答案和解析>>

          同步練習(xí)冊答案