日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 為了解某班學(xué)生喜愛文學(xué)是否與性別有關(guān),對本班50人進行了問卷調(diào) 查,得到了如下的列聯(lián)表:
          喜愛文學(xué)不喜愛文學(xué)合計
          男生101525
          女生20525
          合計302050
          (I)是否有99.5%的把握認為“喜愛文學(xué)與性別“有關(guān)?說明你的理由;
          (II)已知喜愛文學(xué)的10位男生中,A1,A1,A3還喜歡美術(shù);B1,B2,B3還喜歡音樂,C1,C2還 喜歡體育.現(xiàn)在從喜歡美術(shù)、音樂、體育的8位男生中各選出1名進行其他方面的調(diào)查,求男生B1和C1不全被選中的概率.給出以下臨界值表供參考:
          P (K2≥k)0.150.100.050.0250.0100.0050.001
          k2.0722.7063.8415.0246.6357.87910.828
          (參考公式:K2=,其中n=a+b+c+d)
          【答案】分析:(I)根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進行比較,看出有多大的把握說明喜愛文學(xué)與性別.
          (II)從喜歡美術(shù)、音樂、體育的8位男生中各選出1名,其一切可能的結(jié)果組成的基本事件有6×3,而滿足條件的事件B1和C1不全被選中,通過列舉得到事件數(shù),求出概率.
          解答:解:(I)∵K2=≈8.333>7.879
          ∴有99.5%的把握認為喜愛打籃球與性別有關(guān).
          (II)從8位女生中各選出1名,其一切可能的結(jié)果組成的基本事件如下:
          (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),
          (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),
          (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),
          基本事件的總數(shù)為6×3=18,
          用M表示“B1,C1不全被選中”這一事件,
          則其對立事件表示“B1,C1全被選中”這一事件,
          由于由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)3個基本事件組成,
          ∴P()=,
          ∴由對立事件的概率公式得P(M)=1-P()=1-=
          點評:本題考查畫出列聯(lián)表,考查等可能事件的概率,考查獨立性檢驗,在求觀測值時,要注意數(shù)字的代入和運算不要出錯.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了以下2×2列聯(lián)表:
          喜愛打籃球 不喜愛打籃球 合計
          男生 20 5 25
          女生 10 15 25
          合計 30 20 50
          下面的臨界值表供參考:
          P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k 2.027 2.706 3.841 5.042 6.635 7.879 10.828
          綜合公式x2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          可得有
          99.5
          99.5
          %的把握認為喜愛打籃球與性別有關(guān).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          為了解某班學(xué)生喜愛文學(xué)是否與性別有關(guān),對本班50人進行了問卷調(diào) 查,得到了如下的列聯(lián)表:
          喜愛文學(xué) 不喜愛文學(xué) 合計
          男生 10 15 25
          女生 20 5 25
          合計 30 20 50
          (I)是否有99.5%的把握認為“喜愛文學(xué)與性別“有關(guān)?說明你的理由;
          (II)已知喜愛文學(xué)的10位男生中,A1,A1,A3還喜歡美術(shù);B1,B2,B3還喜歡音樂,C1,C2還 喜歡體育.現(xiàn)在從喜歡美術(shù)、音樂、體育的8位男生中各選出1名進行其他方面的調(diào)查,求男生B1和C1不全被選中的概率.給出以下臨界值表供參考:
          P (K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
          (參考公式:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          為了解某班學(xué)生喜愛文學(xué)是否與性別有關(guān),對本班50人進行了問卷調(diào) 查,得到了如下的列聯(lián)表:
          喜愛文學(xué)不喜愛文學(xué)合計
          男生101525
          女生20525
          合計302050
          (I)是否有99.5%的把握認為“喜愛文學(xué)與性別“有關(guān)?說明你的理由;
          (II)已知喜愛文學(xué)的10位男生中,A1,A1,A3還喜歡美術(shù);B1,B2,B3還喜歡音樂,C1,C2還 喜歡體育.現(xiàn)在從喜歡美術(shù)、音樂、體育的8位男生中各選出1名進行其他方面的調(diào)查,求男生B1和C1不全被選中的概率.給出以下臨界值表供參考:
          P (K2≥k)0.150.100.050.0250.0100.0050.001
          k2.0722.7063.8415.0246.6357.87910.828
          (參考公式:K2=數(shù)學(xué)公式,其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          為了解某班學(xué)生喜愛文學(xué)是否與性別有關(guān),對本班50人進行了問卷調(diào) 查,得到了如下的列聯(lián)表:
          喜愛文學(xué) 不喜愛文學(xué) 合計
          男生 10 15 25
          女生 20 5 25
          合計 30 20 50
          (I)是否有99.5%的把握認為“喜愛文學(xué)與性別“有關(guān)?說明你的理由;
          (II)已知喜愛文學(xué)的10位男生中,A1,A1,A3還喜歡美術(shù);B1,B2,B3還喜歡音樂,C1,C2還 喜歡體育.現(xiàn)在從喜歡美術(shù)、音樂、體育的8位男生中各選出1名進行其他方面的調(diào)查,求男生B1和C1不全被選中的概率.給出以下臨界值表供參考:
          P (K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
          (參考公式:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,其中n=a+b+c+d)

          查看答案和解析>>

          同步練習(xí)冊答案