日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=數(shù)學(xué)公式+cx+d(a,c,d∈R)滿足f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立.
          (1)求a,c,d的值;
          (2)若數(shù)學(xué)公式,解不等式f'(x)+h(x)<0;
          (3)是否存在實數(shù)m,使函數(shù)g(x)=f'(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請求出實數(shù)m的值;若不存在,請說明理由.

          解:(1)∵f(0)=0,∴d=0

          恒成立
          顯然a=0時,上式不能恒成立∴是二次函數(shù)
          由于對一切x∈R,都有f'(x)≥0,于是由二次函數(shù)的性質(zhì)可得

          (2)∵


          當(dāng),當(dāng)
          (3)∵,∴

          該函數(shù)圖象開口向上,且對稱軸為x=2m+1.
          假設(shè)存在實數(shù)m使函數(shù)區(qū)間[m.m+2]上有最小值-5.
          ①當(dāng)m<-1時,2m+1<m,函數(shù)g(x)在區(qū)間[m,n+2]上是遞增的.

          解得,∴舍去
          ②當(dāng)-1≤m<1時,m≤2m+1<m+2,函數(shù)g(x)在區(qū)間[m,2m+1]上是遞減的,
          而在區(qū)間[2m+1,m+2]上是遞增的,∴g(2m+1)=-5.

          解得,均應(yīng)舍去
          ③當(dāng)m≥1時,2m+1≥m+2,函數(shù)g(x)在區(qū)間[m,m+2]上遞減的∴g(m+2)=-5

          解得應(yīng)舍去.
          綜上可得,當(dāng)時,
          函數(shù)g(x)=f'(x)-mx在區(qū)間[m,m+2]上有最小值-5.
          分析:(1)待定系數(shù)法求函數(shù)解析式,由f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立列出三個方程,解出a、b、c
          (2)一元二次不等式解法,注意根之間比較,考查分類討論思想
          (3)考查二次函數(shù)最值問題,考查分類討論思想,對m進行討論,看對稱軸與區(qū)間的關(guān)系.
          點評:本題考查導(dǎo)數(shù)的綜合運用,具體包含導(dǎo)數(shù)的計算、恒成立問題、不等式的解法、待定系數(shù)法求函數(shù)解析式、二次函數(shù)最值問題,分類討論思想,對學(xué)生有一定的能力要求,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時f(x)的表達式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案