日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若關于x,y,z的三元一次方程組有唯一解,則θ的取值的集合是   
          【答案】分析:根據(jù)題意三元一次方程組的系數(shù)行列式不為0時,方程組有唯一解,從而問題可解.
          解答:解:由題意三元一次方程組的系數(shù)行列式不為0時,方程組有唯一解
          ,

          ∴sinθ-sin3θ≠0
          ∴sinθ≠0或sin2θ≠1

          故答案為
          點評:本題的考點是矩陣的應用,主要考查三元一次方程組有唯一解,關鍵是轉換為三元一次方程組的系數(shù)行列式不為0,考查三角函數(shù)不等式的求解.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”;
          (1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出三個二元函數(shù),請選出所有能夠成為關于x、y的廣義“距離”的序號:
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
          x-y

          能夠成為關于的x、y的廣義“距離”的函數(shù)的序號是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標系與參數(shù)方程
          已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點Q極坐標為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標方程;
          (Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
          (3)選修4-5:不等式選講
          (I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x,y的二元函數(shù).
          定義:滿足下列性質的二元函數(shù)f(x,y)為關于實數(shù)x,y的廣義“距離”:
          (1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
          x-y

          請選出所有能夠成為關于x,y的廣義“距離”的序號

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•晉中三模)若對任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”:
          (1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出下列四個二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
          f(x,y)=
          x-y
          ; ④f(x,y)=x2+y2
          能夠稱為關于實數(shù)x、y的廣義“距離”的函數(shù)的序號是
          ①④
          ①④

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年福建省福州三中高考數(shù)學模擬試卷(文科)(解析版) 題型:解答題

          若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”;
          (1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
          (2)對稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
          今給出三個二元函數(shù),請選出所有能夠成為關于x、y的廣義“距離”的序號:
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
          能夠成為關于的x、y的廣義“距離”的函數(shù)的序號是   

          查看答案和解析>>

          同步練習冊答案