日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若兩圓x2+(y+1)2=1和(x+1)2+y2=r2相交,則正數(shù)r的取值區(qū)間是( )
          A.(-1,+1)
          B.(,2)
          C.(0,+1)
          D.(0,-1)
          【答案】分析:先寫出兩圓x2+(y+1)2=1和(x+1)2+y2=r2的半徑和圓心,根據(jù)兩個圓的圓心的距離大于兩個圓的半徑之差,小于兩個圓的半徑之和,列出不等式,求出不等式的解.
          解答:解:∵兩圓x2+(y+1)2=1和(x+1)2+y2=r2相交,
          圓x2+(y+1)2=1的半徑和圓心分別是1,(0,-1)
          圓(x+1)2+y2=r2的半徑和圓心分別是r,(-1,0)
          ∴兩個圓的圓心的距離大于兩個圓的半徑之差,小于兩個圓的半徑之和,
          即r-1<<r+1,
          ∴r-1<<r+1,
          ∴r∈(-1,+1),
          ∴正數(shù)r的取值范圍是(-1,+1)
          故選A.
          點(diǎn)評:本題考查圓與圓的位置關(guān)系,本題解題的關(guān)鍵是根據(jù)所給的圓的方程,看出圓心與半徑,根據(jù)兩個圓的位置關(guān)系等價的條件寫出不等式,本題是一個基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•肇慶一模)已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
          (Ⅰ)求圓C的圓心軌跡L的方程;
          (Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
          (Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
          12
          .若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若兩圓x2+(y+1)2=1和(x+1)2+y2=r2相交,則正數(shù)r的取值區(qū)間是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩圓:x2+y2=4和x2+(y-8)2=4.

          (1)若兩圓在直線y=x+b的兩側(cè),求實(shí)數(shù)b的取值范圍;

          (2)求經(jīng)過點(diǎn)A(0,5)且和兩圓都沒有公共點(diǎn)的直線斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年廣東省肇慶市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
          (Ⅰ)求圓C的圓心軌跡L的方程;
          (Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
          (Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案