日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l的高調(diào)函數(shù),如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是
          m≥2
          m≥2
          ,如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實數(shù)a的取值范圍是
          -2≤a≤2.
          -2≤a≤2.
          分析:由題意可知,(1)當(dāng)x≥-1時,x+m≥m-1≥-1,于是有m≥0,而m≠0,從而m>0.由f(x+l)≥f(x)即可求得m的范圍;(2)依題意可知,|x+8-a2|-a2≥|x-a2|-a2,進(jìn)一步整理可得a2≤x+4,(x≥0),結(jié)合恒成立問題可求得實數(shù)a的取值范圍,當(dāng)x≤0時,-x≥0,同理可求a2≤(4-x)min=4;從而可得答案.
          解答:解:(1)∵定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),
          ∴當(dāng)x≥-1時,x+m≥m-1≥-1,
          ∴m≥0,而m≠0,
          ∴m>0.
          又函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),
          ∴f(x+m)≥f(x),即(x+m)2≥x2,
          ∴2mx+m2≥0,又m>0,
          ∴m≥-2x(x≥-1)恒成立,
          ∴m≥(-2x)max,由x≥-1可得-x≤1,-2x≤2,
          ∴(-2x)max=2,
          ∴m≥2.
          故答案為:m≥2.
          (2)∵當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),
          ∴f(x+8)≥f(x),
          ∴|x+8-a2|-a2≥|x-a2|-a2
          ∴|x+8-a2|≥|x-a2|,即[(x-a2)+8]2≥(x-a22,
          ∴16(x-a2)+64≥0,
          ∴a2≤x+4,
          ∴a2≤(x+4)min=4;
          當(dāng)x≤0時,-x≥0,同理可求,a2≤(4-x)min=4;
          ∴-2≤a≤2.
          故答案為:-2≤a≤2.
          點評:本題考查帶絕對值的函數(shù),著重考查函數(shù)恒成立問題,理解題意,合理轉(zhuǎn)化是解決問題的關(guān)鍵,考查分析,轉(zhuǎn)化與運算能力,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-
          3
          2
          )與b=f(
          15
          2
          )的大小關(guān)系為
          a>b
          a>b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
          1
          4
          ]
          時,f(x)≥2x恒成立.則f(
          3
          7
          )+f(
          5
          9
          )
          =
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

          查看答案和解析>>

          同步練習(xí)冊答案