日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)P是平面ABCD上的動(dòng)點(diǎn),點(diǎn)M在棱AB上,且AM=
          1
          3
          ,且動(dòng)點(diǎn)P到直線A1D1的距離與點(diǎn)P到點(diǎn)M的距離的平方差為4,則動(dòng)點(diǎn)P的軌跡是( 。
          A、圓B、拋物線C、雙曲線D、直線
          分析:作PQ⊥AD,作QR⊥D1A1,PR即為點(diǎn)P到直線A1D1的距離,由勾股定理得 PR2-PQ2=RQ2=4,又已知PR2-PM2=4,PM=PQ,即P到點(diǎn)M的距離等于P到AD的距離.
          解答:精英家教網(wǎng)解:如圖所示:正方體ABCD-A1B1C1D1中,作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,過(guò)點(diǎn)Q作QR⊥D1A1,
          則D1A1⊥面PQR,PR即為點(diǎn)P到直線A1D1的距離,由題意可得 PR2-PQ2=RQ2=4.
          又已知 PR2-PM2=4,
          ∴PM=PQ,即P到點(diǎn)M的距離等于P到AD的距離,根據(jù)拋物線的定義可得,點(diǎn)P的軌跡是拋物線,
          故選 B.
          點(diǎn)評(píng):本題考查拋物線的定義,求點(diǎn)的軌跡方程的方法,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,得到PM=PQ是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問(wèn)球O的表面積.
          (1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
           

          (2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
          A1B
          B1C
          、
          EF
          是共面向量.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1棱長(zhǎng)為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
          (1)求GH長(zhǎng)的取值范圍;
          (2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
          13
          AB

          (1)證明:直線EH與FG共面;
          (2)若正方體的棱長(zhǎng)為3,求幾何體GHC1-EFC的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案