日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4、f(x)是定義在實(shí)數(shù)有R上的奇函數(shù),若x≥0時(shí),f(x)=log3(1+x),則f(-2)=
          -1
          分析:根據(jù)當(dāng)x≥0時(shí)的函數(shù)解析式求出函數(shù)值f(2),再根據(jù)奇函數(shù)的定義求出f(-2)的值.
          解答:解:∵當(dāng)x≥0時(shí),f(x)=log3(1+x),∴f(2)=log3(1+2)=1;
          ∵f(x)是定義在實(shí)數(shù)有R上的奇函數(shù),∴f(-2)=-f(2)=-1.
          故答案為:-1.
          點(diǎn)評:本題考查了利用函數(shù)的奇偶性求函數(shù)值,注意函數(shù)解析式中自變量的范圍,并且在此范圍內(nèi)取恰當(dāng)?shù)闹导磁c所求的值能聯(lián)系在一起.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-4x+3,
          (Ⅰ)求f[f(-1)]的值;  
          (Ⅱ)求函數(shù)f(x)的解析式;  
          (Ⅲ)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=
          (-∞,0]∪[1,4]
          (-∞,0]∪[1,4]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0,f(x)+xf′(x)>0(其中f′(x)是f(x)的導(dǎo)函數(shù)),a={log
          1
          2
          4}flog
          1
          2
          4,b=
          2
          f(
          2
          )設(shè)c=(lg
          1
          5
          ),則a,b,c的大小關(guān)系是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=-1+log2x.
          (1)求當(dāng)x<0時(shí),求f(x)的表達(dá)式;
          (2)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間(不要求證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),對?x∈R,f(x-2)=f(x+2),當(dāng)x∈(0,2)時(shí),f(x)=x2,則f(
          13
          2
          )=( 。

          查看答案和解析>>

          同步練習(xí)冊答案