日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知-1≤x≤2,且x≠0,求lg|x|+lg|7-x|的最大值.
          (2)已知x∈R,求函數(shù)y=3(4x+4-x)-10(2x+2-x)的最小值.
          (3)已知2x≤256且數(shù)學(xué)公式,求函數(shù)數(shù)學(xué)公式的最大值和最小值.

          解:(1)lg|x|+lg|7-x|=lg|7x-x2|.∵-1≤x≤2∴7x-x2∈[-8,10],|7x-x2|∈[0,10]∴最大值為1(此時(shí)x=2)
          (2)令t=(2x+2-x)(t≥2),則y=3t2-10t-6(t≥2),∴y≥-14(此時(shí)x=1)
          (3)由已知,,f(x)=(log2x-1)(log2x-2)=log22x-3log2x+2,令t=log2x
          則y=t2-3t+2,函數(shù)f(x)的最小值為(此時(shí)x=8),最大值為2(此時(shí)
          分析:(1)將lg|x|+lg|7-x|化為lg|7x-x2|,通過(guò)求7x-x2的取值范圍解決.
          (2)令
          t=(2x+2-x)進(jìn)行換元.轉(zhuǎn)化為二次函數(shù)解決.
          (3)根據(jù)對(duì)數(shù)的運(yùn)算法則,,f(x)=(log2x-1)(log2x-2)=log22x-3log2x+2,令t=log2x,轉(zhuǎn)化為二次函數(shù)解決.
          點(diǎn)評(píng):本題考查對(duì)數(shù)的運(yùn)算,二次函數(shù)性質(zhì)、換元法,考查分析解決問(wèn)題、計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知矩陣A=
          33
          24
          ,向量β=
          6
          8

          (Ⅰ)求矩陣A的特征值和對(duì)應(yīng)的特征向量;
          (Ⅱ)求向量α,使得A2α=β.
          (2)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A、B的極坐標(biāo)分別為(1,0)、(1,
          π
          2
          )
          ,曲線C的參數(shù)方程為
          x=rcosα
          y=rsinα
          為參數(shù),r>0)
          (Ⅰ)求直線AB的直角坐標(biāo)方程;
          (Ⅱ)若直線AB和曲線C只有一個(gè)交點(diǎn),求r的值.
          (3)設(shè)不等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相同.
          (Ⅰ)求a,b的值;
          (Ⅱ)求函數(shù)f(x)=a
          x-3
          +b
          5-x
          的最大值,以及取得最大值時(shí)x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列四個(gè)命題:
          ①已知f(x)+2f(
          1
          x
          )=3x
          ,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點(diǎn);
          ②對(duì)于函數(shù)f(x)=x
          1
          2
          的定義域中任意的x1、x2(x1≠x2)必有f(
          x1+x2
          2
          )<
          f(x1)+f(x2)
          2

          ③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
          ④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對(duì)任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
          其中正確命題的序號(hào)是
          ①③
          ①③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數(shù).
          (1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
          第一組:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
          π
          3
          )
          ;
          第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
          (2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
          (3)已知f(x)=x,g(x)=
          1
          x
          ,x∈[1,10]
          的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選修4-5不等式選講
          (1)已知x,y,z∈R,且x2+y2+z2=1,求2x+3y+4z的最小值;
          (2)解關(guān)于x的不等式:|2x+1|+|x+2|>5.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知函數(shù)f(x)=x2,g(x)為一次函數(shù),且為增函數(shù),若f[g(x)]=4x2-20x+15,求g(x)的解析式;

          (2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

          (3)f(x)是R上的奇函數(shù),且x∈(-∞,0)時(shí),f(x)=x2+2x,求f(x);

          (4)某工廠生產(chǎn)一種機(jī)器的固定成本為5 000元,且每生產(chǎn)100部,需要增加投入2 500元,對(duì)銷售市場(chǎng)進(jìn)行調(diào)查后得知,市場(chǎng)對(duì)此產(chǎn)品的需求量為每年500部,已知銷售收入的函數(shù)為H(x)=500x-x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.若x為年產(chǎn)量,y表示利潤(rùn),求y=f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案