日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 斜率為1的直線經(jīng)過拋物線y2=4x的焦點(diǎn),與拋物線相交于A,B兩點(diǎn),則|AB|=
           
          分析:先根據(jù)拋物線方程求得拋物線的焦點(diǎn)坐標(biāo),進(jìn)而根據(jù)點(diǎn)斜式求得直線的方程與拋物線方程聯(lián)立,消去y,根據(jù)韋達(dá)定理求得x1+x2=的值,進(jìn)而根據(jù)拋物線的定義可知|AB|=x1+
          p
          2
          +x2+
          p
          2
          求得答案.
          解答:解:拋物線焦點(diǎn)為(1,0)
          則直線方程為y=x-1,代入拋物線方程得x2-6x+1=0
          ∴x1+x2=6
          根據(jù)拋物線的定義可知|AB|=x1+
          p
          2
          +x2+
          p
          2
          =x1+x2+p=6+2=8
          故答案為:8
          點(diǎn)評:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是靈活利用了拋物線的定義.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C的參數(shù)方程為
          x=8t2
          y=8t
          (t為參數(shù)),若斜率為1的直線經(jīng)過拋物線C的焦點(diǎn),且與圓(x-4)2+y2=r2(r>0)相切,則r=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C1的參數(shù)方程為
          x=8t2
          y=8t
          (t為參數(shù)),圓C2的極坐標(biāo)方程為ρ=r(r>0),若斜率為1的直線經(jīng)過拋物線C1的焦點(diǎn),且與圓C2相切,則r=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)(不等式選講選做題)若關(guān)于x的不等式|x-1|+|x+m|>3的解集為R,則實(shí)數(shù)m的取值范圍是
          (-∞,-4)∪(2,+∞)
          (-∞,-4)∪(2,+∞)

          (2)(坐標(biāo)系與參數(shù)方程選做題)已知拋物線C1的參數(shù)方程為
          x=8t2
          y=8t
          (t為參數(shù)),圓C2的極坐標(biāo)方程為ρ=r(r>0),若斜率為1的直線經(jīng)過拋物線C1的焦點(diǎn),且與圓C2相切,則r=
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:填空題

          (1)(不等式選講選做題)若關(guān)于x的不等式|x-1|+|xm|>3的解集為R,則實(shí)數(shù)m的取值范圍是________.

          (2)(坐標(biāo)系與參數(shù)方程選做題)已知拋物線C1的參數(shù)方程為(t為參數(shù)),圓C2的極坐標(biāo)方程為ρr(r>0),若斜率為1的直線經(jīng)過拋物線C1的焦點(diǎn),且與圓C2相切,則r=________.

           

           

          查看答案和解析>>

          同步練習(xí)冊答案