【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線
的參數(shù)方程為
,(
為參數(shù),且
),曲線
的極坐標(biāo)方程為
.
()求
的極坐標(biāo)方程與
的直角坐標(biāo)方程.
()若
是
上任意一點,過點
的直線
交
于點
,
,求
的取值范圍.
【答案】(1),
;(2)
【解析】試題分析:()消去參數(shù),即可得到
的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到
的極坐標(biāo)方程,同理可得
的直角坐標(biāo)方程;
()設(shè)
,把直線的參數(shù)方程代入曲線
的方程,利用直線參數(shù)的幾何意義,即可得到
的取值范圍.
試題解析:
()消去參數(shù)可得
,由
,則
,
,
∴曲線是
在
軸上方的部分,
∴曲線的極坐標(biāo)方程為
,
曲線的直角坐標(biāo)方程為
.
()設(shè)
,則
,直線
的傾斜角為
,則直線
的參數(shù)方程為:
(
為參數(shù)),
代入的直角坐標(biāo)方程得
,
由直線參數(shù)方程中的幾何意義可知
,
因為,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面
為等腰梯形,
.
(1)證明:;
(2)設(shè)是線段
上的動點,是否存在這樣的點
,使得二面角
的余弦值為
,如果存在,求出
的長;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆寧夏育才中學(xué)高三上學(xué)期期末】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
由表中的數(shù)據(jù)顯示, 與
之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】揚州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實習(xí),每名大學(xué)生都被隨機分配到兩所中學(xué)的其中一所.
(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實習(xí)的概率;
(2)設(shè),
分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記
,求隨機變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費者喜愛.其中,種類型的快餐每份進價為
元,并以每份
元的價格銷售.如果當(dāng)天20:00之前賣不完,剩余的該種快餐每份以
元的價格作特價處理,且全部售完.
(1)若該代賣店每天定制份
種類型快餐,求
種類型快餐當(dāng)天的利潤
(單位:元)關(guān)于當(dāng)天需求量
(單位:份,
)的函數(shù)解析式;
(2)該代賣店記錄了一個月天的
種類型快餐日需求量(每天20:00之前銷售數(shù)量)
日需求量 | ||||||
天數(shù) |
(i)假設(shè)代賣店在這一個月內(nèi)每天定制份
種類型快餐,求這一個月
種類型快餐的日利潤(單位:元)的平均數(shù)(精確到
);
(ii)若代賣店每天定制份
種類型快餐,以
天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求
種類型快餐當(dāng)天的利潤不少于
元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校的特長班有名學(xué)生,其中有體育生
名,藝術(shù)生
名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進行了心率測試,心率全部介于
次/分到
次/分之間.現(xiàn)將數(shù)據(jù)分成五組,第一組
,第二組
,…,第五章
,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為
.
(1)求的值,并求這
名同學(xué)心率的平均值;
(2)因為學(xué)習(xí)專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機抽取一名,該學(xué)生是體育生的概率為,請將下面的列聯(lián)表補充完整,并判斷是否有
的把握認(rèn)為心率小于
次/分與常年進行系統(tǒng)的身體鍛煉有關(guān)?說明你的理由.
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計 | 50 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù). 若曲線y=
在點P(e,f(e))處的切線方程為y=2x-e(為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試比較
與
的大小,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了推動數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個班,每班各40人,甲班按原有模式教學(xué),乙班實施教學(xué)方法改革.經(jīng)過一年的教學(xué)實驗,將甲、乙兩個班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學(xué)成績的中位數(shù)為74.
(1)求的值和乙班同學(xué)成績的眾數(shù);
(2)完成表格,若有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”的話,那么學(xué)校將擴大教學(xué)改革面,請問學(xué)校是否要擴大改革面?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com