日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上是減函數(shù),若f(
          1
          3
          )>0>f(
          2
          )
          ,則方程f(x)=0的根的個數(shù)是(  )
          A、2B、2或1C、3D、2或3
          分析:根據(jù)函數(shù)的奇偶性與單調(diào)性,我們易判斷函數(shù)f(x)在區(qū)間(0,+∞)和(-∞,0)上零點的個數(shù),但由于f(0)的值不確定,故要分類討論出函數(shù)f(x)零點的個數(shù),
          即方程f(x)=0的根的個數(shù).
          解答:解:∵函數(shù)f(x)是定義在R上的偶函數(shù)
          ∴函數(shù)f(x)的圖象關(guān)于Y軸對稱
          又∵函數(shù)f(x)在(0,+∞)上是減函數(shù)
          f(
          1
          3
          )>0>f(
          2
          )
          ,
          則函數(shù)在區(qū)間(0,+∞)上有且只有一個零點
          在區(qū)間(-∞,0)上有且只有一個零點
          若f(0)=0則函數(shù)有三個零點,此時方程f(x)=0的有3個根;
          若f(0)≠0則函數(shù)有兩個零點,此時方程f(x)=0的有2個根;
          故選D
          點評:本題考查的知識點是函數(shù)奇偶性與單調(diào)性的綜合應用,方程根的個數(shù)及分布,其中由于f(0)的值不確定而需要進行分類討論,易被忽略,而錯選A.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2

          (1)計算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域為(0,+∞),且f(2)=2+
          2
          2
          .設點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
          (3)設O為坐標原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1y1),N(x2,y2)
          是f(x)圖象上的兩點,橫坐標為
          1
          2
          的點P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標原點).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn;
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

          查看答案和解析>>

          同步練習冊答案