(本題滿分18分,第(1)小題9分,第(2)小題9分)
設復數(shù)與復平面上點
對應.
(1)設復數(shù)滿足條件
(其中
,常數(shù)
),當
為奇數(shù)時,動點
的軌跡為
;當
為偶數(shù)時,動點
的軌跡為
,且兩條曲線都經(jīng)過點
,求軌跡
與
的方程;
(2)在(1)的條件下,軌跡上存在點
,使點
與點
的最小距離不小于
,求實數(shù)
的取值范圍.
(1)
(2)或
.
【解析】(本題滿分18分,第(1)小題9分,第(2)小題9分)
解:(1)方法1:①當為奇數(shù)時,
,常數(shù)
,
軌跡為雙曲線,其方程為
;……3分
②當為偶數(shù)時,
,常數(shù)
,
軌跡為橢圓,其方程為
;……6分
依題意得方程組解得
,
因為,所以
,
此時軌跡為與
的方程分別是:
,
.……9分
方法2:依題意得……3分
軌跡為與
都經(jīng)過點
,且點
對應的復數(shù)
,
代入上式得,……6分
即對應的軌跡
是雙曲線,方程為
;
對應的軌跡
是橢圓,方程為
.……9分
(2)由(1)知,軌跡:
,設點
的坐標為
,
則
,
……12分
當即
時,
當即
時,
,……16分
綜上 或
.……18分
科目:高中數(shù)學 來源: 題型:
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點
的直線與線段
分別相交于點
。若
。
(1)求證:與
的關系為
;
(2)設,定義函數(shù)
,點列
在函數(shù)
的圖像上,且數(shù)列
是以首項為1,公比為
的等比數(shù)列,
為原點,令
,是否存在點
,使得
?若存在,請求出
點坐標;若不存在,請說明理由。
(3)設函數(shù)為
上偶函數(shù),當
時
,又函數(shù)
圖象關于直線
對稱, 當方程
在
上有兩個不同的實數(shù)解時,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆上海市崇明中學高三第一學期期中考試試題數(shù)學 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當
時
是周期為
的周期數(shù)列,當
時
是周期為
的周期數(shù)列。
(1)設數(shù)列滿足
(
),
(
不同時為0),且數(shù)列
是周期為
的周期數(shù)列,求常數(shù)
的值;
(2)設數(shù)列的前
項和為
,且
.
①若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設數(shù)列滿足
(
),
,
,
,數(shù)列
的前
項和為
,試問是否存在
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市高三第一學期期中考試試題數(shù)學 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當
時
是周期為
的周期數(shù)列,當
時
是周期為
的周期數(shù)列。
(1)設數(shù)列滿足
(
),
(
不同時為0),且數(shù)列
是周期為
的周期數(shù)列,求常數(shù)
的值;
(2)設數(shù)列的前
項和為
,且
.
①若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設數(shù)列滿足
(
),
,
,
,數(shù)列
的前
項和為
,試問是否存在
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在,
說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市十三校高三上學期第一次聯(lián)考試題文科數(shù)學 題型:解答題
(本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)
已知函數(shù),其中
.
(1)當時,設
,
,求
的解析式及定義域;
(2)當,
時,求
的最小值;
(3)設,當
時,
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設數(shù)列是等差數(shù)列,且公差為
,若數(shù)列
中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設是數(shù)列
的前
項和,若公差
,試問:是否存在這樣的“封閉數(shù)列”,使
;若存在,求
的通項公式,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com