日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)f(x)=
          x-3
          mx2+4mx+5
          的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是(  )
          分析:由題意可得,mx2+4mx+5≠0恒成立,m=0時(shí),顯然滿(mǎn)足條件.當(dāng)m≠0 時(shí),則由△=16m2-20m<0,解得 m的取值范圍,再取并集,即得所求.
          解答:解:由于 函數(shù)f(x)=
          x-3
          mx2+4mx+5
          的定義域?yàn)镽,
          ∴mx2+4mx+5≠0恒成立.
          當(dāng)m=0時(shí),顯然滿(mǎn)足條件.
          當(dāng)m≠0 時(shí),則有△=16m2-20m<0,解得 0<m<
          5
          4
          ,
          綜上可得,實(shí)數(shù)m的取值范圍是 [0,
          5
          4
          )
          ,
          故選C.
          點(diǎn)評(píng):本題主要考查求函數(shù)得定義域,二次函數(shù)的性質(zhì),體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若函數(shù)f(x)滿(mǎn)足條件:當(dāng)x1,x2∈[-1,1]時(shí),有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱(chēng)f(x)∈Ω.對(duì)于函數(shù)g(x)=x3,h(x)=
          1
          x+2
          ,有( 。
          A、g(x)∈Ω且h(x)∉Ω
          B、g(x)∉Ω且h(x)∈Ω
          C、g(x)∈Ω且h(x)∈Ω
          D、g(x)∉Ω且h(x)∉Ω

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

          若函數(shù) f(x)=ax (a>0,a≠1 ) 的部分對(duì)應(yīng)值如表:

          則不等 式f-1(│x│<0)的解集是       


          1. A.
            {x│-1<x<1}
          2. B.
            {x│x<-1或x>1}
          3. C.
            {x│0<x<1}
          4. D.
            {x│-1<x<0或0<x<1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案