日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20.設(shè)y=fx)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:

          (ⅰ)f(-1)=f(1)=0;

          (ⅱ)對任意的uv∈[-1,1],都有|fu)-fv)|≤|uv|.

          (Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤fx)≤1-x;

          (Ⅱ)判斷函數(shù)gx)=,是否滿足題設(shè)條件;

          (Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=fx),且使得對任意的u,v∈[-1,1],都有|fu)-fv)|=|uv|.

          若存在,請舉一例;若不存在,請說明理由.

          20.

          (Ⅰ)證明:由題設(shè)條件可知,當x∈[-1,1]時,有|fx)|=|fx)-f(1)|≤|x-1|=1-x,

          x-1≤fx)≤1-x.

           

          (Ⅱ)答:函數(shù)gx)滿足題設(shè)條件.驗證如下:g(-1)=0=g(1).

          對任意的uv∈[-1,1],

          u,v∈[0,1]時,有|gu)-gv)|=|(1-u)-(1-v)|=|uv|;當uv∈[-1,0]時,同理有|gu)-gv)|=|uv|;

          u·v<0時,不妨設(shè)u∈[-1,0),v∈(0,1],有

          |gu)-gv)|=|(1+u)-(1-v)|=|u+v|≤|vu|.

          所以,函數(shù)gx)滿足題設(shè)條件.

           

          (Ⅲ)答:這樣的函數(shù)不存在.理由如下:

          假設(shè)存在fx)滿足條件,則由f(-1)=f(1)=0,得

          |f(1)-f(-1)|=0.                                                       ①

          由于對任意的u,v∈[-1,1],都有|fu)-fv)|= |uv|,

          所以,|f(1)-f(-1)|=|1-(-1)|=2.                        ②

          ①與②矛盾,因此假設(shè)不成立,即這樣的函數(shù)不存在.


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)y=f(x)是定義在區(qū)間(a,b)(b>a)上的函數(shù),若對?x1、x2∈(a,b),都有|f(x1)-f(x2)|≤|x1-x2|,則稱y=f(x)是區(qū)間(a,b)上的平緩函數(shù).
          (1)試證明對?k∈R3,f(x)=x2+kx+14都不是區(qū)間(-1,1)5上的平緩函數(shù);
          (2)若f(x)是定義在實數(shù)集R上的、周期為T=2的平緩函數(shù),試證明對?x1、x2∈R,|f(x1)-f(x2)|≤1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)y=f(x)是定義在R上的偶函數(shù),滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下列關(guān)于函數(shù)y=f(x)的判斷:
          ①y=f(x)是周期函數(shù);
          ②y=f(x)的圖象關(guān)于直線x=1對稱;
          ③y=f(x)在[0,1]上是增函數(shù);
          f(
          12
          )=0

          其中正確判斷的序號是
           
          .(把你認為正確判斷的序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)y=f(x)是定義在R上的函數(shù),給定下列三個條件:
          (1)y=f(x)是偶函數(shù);
          (2)y=f(x)的圖象關(guān)于直線x=1對稱;
          (3)T=2為y=f(x)的一個周期.
          如果將上面(1)、(2)、(3)中的任意兩個作為條件,余下一個作為結(jié)論,那么構(gòu)成的三個命題中真命題的個數(shù)有
          3
          3
          個.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
          (Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
          (Ⅱ)判斷函數(shù)g(x)=
          1+x,x∈[-1,0)
          1-x,x∈[0,1]
          是否滿足題設(shè)條件;
          (Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
          若存在,請舉一例:若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件,①f(-1)=f(1)=0,②對任意的u、v∈[-1,1],都有|f(u)-f(v)|≤|u-v|
          (Ⅰ)證明:對任意x∈[-1,1],都有x-1≤f(x)≤1-x
          (Ⅱ)證明:對任意的u,v∈[-1,1]都有|f(u)-f(v)|≤1
          (Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x)且使得
          |f(u)-f(v)|<|u-v|uv∈[0,
          1
          2
          ]
          |f(u)-f(v)|=|u-v|uv∈[
          1
          2
          ,1]
          ;若存在請舉一例,若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案