日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知中心在原點(diǎn),對稱軸為坐標(biāo)軸且經(jīng)過點(diǎn)P(1,3),離心率為
          2
          的雙曲線的標(biāo)準(zhǔn)方程為( 。
          分析:由雙曲線得離心率可知為等軸雙曲線,故設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為x2-y2=λ(λ≠0),把點(diǎn)P的坐標(biāo)代入即可得出.
          解答:解:∵e=
          c
          a
          =
          1+
          b2
          a2
          =
          2
          ,∴a=b,
          ∴雙曲線為等軸雙曲線,故設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為x2-y2=λ(λ≠0),又點(diǎn)P(1,3)
          在雙曲線上,則λ=1-9=-8,
          ∴所求雙曲線的標(biāo)準(zhǔn)方程為
          y2
          8
          -
          x2
          8
          =1

          故選D.
          點(diǎn)評:熟練掌握等軸雙曲線 的性質(zhì)是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知中心在原點(diǎn)、焦點(diǎn)在x軸上橢圓,離心率為
          6
          3
          ,且過點(diǎn)A(1,1)
          (Ⅰ)求橢圓方程;
          (Π)如圖,B為橢圓右頂點(diǎn),橢圓上點(diǎn)C與A關(guān)于原點(diǎn)對稱,過點(diǎn)A作兩條直線交橢圓P、Q(異于A、B),交x軸與P',Q',若|AP'|=|AQ'|,求證:存在實(shí)數(shù)λ,使得
          PQ
          BC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(0,1),離心率為
          2
          2

          (I)求橢圓E的方程;
          (II)若直線l過橢圓E的左焦點(diǎn)F,且與橢圓E交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為C,直線BC與x軸交于點(diǎn)M,當(dāng)△MAF的面積為
          1
          2
          ,求△MAC的內(nèi)切圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆四川省綿陽市高二上學(xué)期期末教學(xué)質(zhì)量測試數(shù)學(xué)試題 題型:解答題

          如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過點(diǎn)(),且它的左焦點(diǎn)F1將長軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

              (1)求橢圓的標(biāo)準(zhǔn)方程;

              (2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動點(diǎn),延長F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線l對稱,求F2Q與l的交點(diǎn)M的軌跡方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知中心在原點(diǎn)、焦點(diǎn)在x軸上橢圓,離心率為數(shù)學(xué)公式,且過點(diǎn)A(1,1)
          (Ⅰ)求橢圓方程;
          (Ⅱ)如圖,B為橢圓右頂點(diǎn),橢圓上點(diǎn)C與A關(guān)于原點(diǎn)對稱,過點(diǎn)A作兩條直線交橢圓P、Q(異于A、B),交x軸與P',Q',若|AP'|=|AQ'|,求證:存在實(shí)數(shù)λ,使得數(shù)學(xué)公式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年云南省昆明市高三復(fù)習(xí)適應(yīng)性檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(0,1),離心率為
          (I)求橢圓E的方程;
          (II)若直線l過橢圓E的左焦點(diǎn)F,且與橢圓E交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為C,直線BC與x軸交于點(diǎn)M,當(dāng)△MAF的面積為,求△MAC的內(nèi)切圓方程.

          查看答案和解析>>

          同步練習(xí)冊答案