日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+1(a>0,b∈R),設(shè)方程f(x)=x有兩個實根x1、x2.

          (1)如果x1<2<x2<4,設(shè)函數(shù)f(x)的對稱軸為x=x0,求證:x0>-1;

          (2)如果0<x1<2,且f(x)=x的兩實根相差為2,求實數(shù)b的取值范圍.

          (1)證明:設(shè)g(x)=f(x)-x=ax2+(b-1)x+1,且a>0,則由條件x1<2<x2<4,得g(2)<0且g(4)>0,

          -4a<b<-2a.   

          所以-4a<-2a,得a>.

              由-4a<b<-2a,得1-<-<2-.

              所以x0=->1->1-=-1,即x0>-1.

          (2)解:由g(x)=ax2+(b-1)x+1=0,可知x1x2=>0,即x1與x2同號.

          因為0<x1<2,所以x2-x1=2,

              所以(x2-x1)2=(x2+x1)2-4x1x2==42a+1=.

              將g(2)<0,即4a+2b-1<0代入上式有2<3-2bb<.


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+
          1
          2
          滿足f(1+x)=f(1-x)且方程f(x)=
          5
          2
          -x
          有等根
          (1)求f(x)的表達式;
          (2)若f(x)在定義域(-1,t]上的值域為(-1,1],求t的取值范圍;
          (3)是否存在實數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)y=f(x)+
          2
          3
          x-1
          的圖象過原點且關(guān)于y軸對稱,記函數(shù) h(x)=
          x
          f(x)

          (I)求b,c的值;
          (Ⅱ)當a=
          1
          10
          時,求函數(shù)y=h(x)
          的單調(diào)遞減區(qū)間;
          (Ⅲ)試討論函數(shù) y=h(x)的圖象上垂直于y軸的切線的存在情況.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
          bx-1a2x+2b

          (1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
          (2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調(diào)性;
          (3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=
          -x2-x+2
          的定義域為A,若對任意的x∈A,不等式x2-4x+k≥0成立,則實數(shù)k的最小值為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
          bx-1a2x+2b

          (1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
          (2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調(diào)性;
          (3)當b=2a時,問是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實數(shù)a,不等式f(x)<4恒成立?并說明理由.

          查看答案和解析>>

          同步練習冊答案