日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知右焦點為的橢圓關(guān)于直線對稱的圖形過坐標原點.

          是橢圓的左頂點,斜率為的直線交,兩點,點上,.

          (Ⅰ)當(dāng)時,求的面積;

          (Ⅱ)當(dāng)時,證明:.

          【答案】(Ⅰ);

          (Ⅱ)證明詳見解析

          【解析】

          (Ⅰ)由橢圓關(guān)于直線的對稱圖形過原點,可得a、c的關(guān)系,再由a、bc的關(guān)系,可得a、c的值,進而求得橢圓方程,由可知兩線段關(guān)于x軸對稱,直線AM傾斜角為求出直線方程,與橢圓方程聯(lián)立求得交點坐標,進而求得三角形面積.

          (Ⅱ)用設(shè)而不求的方式,分別假設(shè)兩條直線方程,并求出弦長,且兩直線斜率互為負倒數(shù),根據(jù)兩弦長之間的斜率關(guān)系,得出斜率k的方程,根據(jù)函數(shù)與方程的關(guān)系,通過求導(dǎo)分析,證明結(jié)論.

          (Ⅰ)由題意得橢圓的焦點在軸上,∵橢圓關(guān)于直線對稱的圖形過坐標原點,∴,∵,∴,解得.∴橢圓的方程為.設(shè),則由題意知.

          由已知及橢圓的對稱性知,直線的傾斜角為,

          ,因此直線的方程為.

          代入,

          解得,所以.

          因此的面積.

          (2)將直線的方程代入

          .

          ,故.

          由題設(shè),直線的方程為,故同理可得.

          ,即.

          設(shè),則的零點,,

          所以單調(diào)遞增,又,,

          因此有唯一的零點,且零點內(nèi),所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖4,在四棱錐中,底面,底面為直角梯形,,過作平面分別交線段于點.

          (1)證明:

          (2)若直線與平面所成的線面角的正切值為,則當(dāng)點在線段的何處時,直線與平面所成角為?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),其中為直線的傾斜角.以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

          (1)寫出直線的普通方程和曲線的直角坐標方程;

          (2)若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,求兩點間的距離的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量y(單位:萬件)的影響,統(tǒng)計了近10年投入的年研發(fā)費用x,與年銷售量的數(shù)據(jù),得到散點圖如圖所示:

          (1)利用散點圖判斷,(其中 為大于0的常數(shù))哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).

          (2)對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如下表:

          15

          15

          28.25

          56.5

          根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

          (3)已知企業(yè)年利潤z(單位:千萬元)與,的關(guān)系為(其中…),根據(jù)(2)的結(jié)果,要使得該企業(yè)下年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費用?

          附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】IT從業(yè)者繪制了他在26歲~35(2009年~2018)之間各年的月平均收入(單位:千元)的散點圖:

          1)由散點圖知,可用回歸模型擬合的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程

          2)若把月收入不低于2萬元稱為“高收入者”.

          試利用(1)的結(jié)果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關(guān)系?

          附注:①.參考數(shù)據(jù):,,,,,其中,取,

          .參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,

          PK2k

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017-2018學(xué)年安徽省六安市第一中學(xué)高三上學(xué)期第二次月考)已知函數(shù)是偶函數(shù).

          (1)的值;

          (2)若函數(shù)的圖象與直線沒有交點,的取值范圍;

          (3)若函數(shù),是否存在實數(shù)使得的最小值為0,若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于的不等式,下列結(jié)論正確的是(

          A.當(dāng)時,不等式的解集為

          B.當(dāng),時,不等式的解集為

          C.當(dāng)時,不等式的解集可以為的形式

          D.不等式的解集恰好為,那么

          E.不等式的解集恰好為,那么

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x-3|-|x+1|.

          (1)f(x)的值域

          (2)解不等式f(x)>0;

          (3)若直線yaf(x)的圖像無交點,求實數(shù)a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的首項是數(shù)列的前項和,且滿足

          1)若數(shù)列是等差數(shù)列,求的值;

          2)確定的取值集合,使時,數(shù)列是遞增數(shù)列.

          查看答案和解析>>

          同步練習(xí)冊答案