日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=1+x(≤x≤2)的反函數(shù)為(    )

          A.y=()x+1(0≤x≤2)                 B.y=()x-1(0≤x≤2)

          C.y=()x+1(1≤x≤2)                 D.y=()x-1(1≤x≤2)

          答案:B  【解析】本題考查求反函數(shù)知識.易知由x∈[,2]時,-1=2≤x≤ =1,故已知函數(shù)的值域為[0,2],又y-1=xx=()y-1,將x,y互換得反函數(shù)為y=()x-1(0≤x≤2).

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
          (1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
          (2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
          (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
          ①f(2-n)與2-n+2(n∈N*);
          ②f(x)與2x+2(x∈(0,1]).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
          請觀察表中值y隨x值變化的特點,完成以下的問題.
          函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間(0,2)上遞減;
          函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間
          (2,0)
          (2,0)
          上遞增.
          當x=
          2
          2
          時,y最小=
          4
          4

          證明:函數(shù)f(x)=x+
          4
          x
          (x>0)在區(qū)間(0,2)遞減.
          思考:(直接回答結果,不需證明)
          (1)函數(shù)f(x)=x+
          4
          x
          (x<0)有沒有最值?如果有,請說明是最大值還是最小值,以及取相應最值時x的值.
          (2)函數(shù)f(x)=ax+
          b
          x
          ,(a<0,b<0)在區(qū)間
          [-
          b
          a
          ,0)
          [-
          b
          a
          ,0)
           和
          (0,
          b
          a
          ]
          (0,
          b
          a
          ]
          上單調遞增.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2008•湖北模擬)函數(shù)y=1-x2(x<0)的反函數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
          函數(shù)h(x)=
          f(x)•g(x),當x∈M且x∈N
          f(x),當x∈M且x∉N
          g(x),當x∉M且x∈N

          (1)若函數(shù)f(x)=
          1
          x+1
          ,g(x)=x2+2x+2,x∈R
          ,求函數(shù)h(x)的取值集合;
          (2)若f(x)=1,g(x)=x2+2x+2,設bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標為(an,bn).求證:
          1
          |P1P2|2
          +
          1
          |P1P3|2
          +…+
          1
          |P1Pn|2
          2
          5
          ;
          (3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

          查看答案和解析>>

          同步練習冊答案