【題目】如圖,在平行四邊形ABCD中,沿其對(duì)角線BD將折起至
,使得點(diǎn)
在平面ABCD內(nèi)的射影恰為點(diǎn)B,點(diǎn)E為
的中點(diǎn).
(Ⅰ)求證:平面BDE;
(Ⅱ)若,求
與平面BDE所成的角.
【答案】(Ⅰ)證明見解析(Ⅱ).
【解析】
(Ⅰ)連接交
于點(diǎn)
,連接
,證得
,再結(jié)合線面平行的判定定理,即可證得
平面
;
(Ⅱ)通過線面垂直來證明面面垂直,結(jié)合根據(jù)面面垂直的性質(zhì)定理來得到線面垂直,從而得到是
與平面
所成的角,在
中,即可求解.
(Ⅰ)如圖所示,連接交
于點(diǎn)
,則
為
的中點(diǎn),
連接,因?yàn)辄c(diǎn)
為
的中點(diǎn),則
,
且平面
,
平面
,所以
平面
.
(Ⅱ)因?yàn)辄c(diǎn)在平面
內(nèi)的射影恰為點(diǎn)
,所以
,
從而可知,故
,
且
,
所以平面
,則有
,
不妨設(shè),則
,
,
,
,則
,如圖所示,在平面
與平面
上分別過點(diǎn)
,
作
的垂線,垂足重合,記為
,
所以平面
且
平面
,故平面
平面
,
過點(diǎn)作
于點(diǎn)
,則
是
與平面
所成的角,
在中,
,
,所以
,
又由,所以直線
與平面
所成的角為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門實(shí)習(xí),要求每個(gè)部門至少安排1人,其中甲大學(xué)生不能安排到
部門工作,安排方法有______種
用數(shù)字作答
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
在
處的切線方程;
(2)當(dāng)時(shí),討論
的單調(diào)性;
(3)若有兩個(gè)極值點(diǎn)
、
,且不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列
的前
項(xiàng)和為
,
,
,__________.在①
;②
;③
這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).
(1)求數(shù)列和
的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcosθ=4,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點(diǎn)為坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立直角坐標(biāo)系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點(diǎn).
(Ⅰ)寫出直線l的直角坐標(biāo)方程以及曲線C的參數(shù)方程;
(Ⅱ)若射線l′與直線l交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的上、下頂點(diǎn)分別為, 點(diǎn)
是橢圓上異于
的任意一點(diǎn),
軸,
為垂足,
為線段
中點(diǎn),直線
交直線
于點(diǎn)
,
為線段
的中點(diǎn),若四邊形
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角
、
、
的對(duì)邊分別為
、
、
,且
.
(Ⅰ)求;
(Ⅱ)若,
,如圖,
為線段
上一點(diǎn),且
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求實(shí)數(shù)x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時(shí),有g(x)=f(x),當(dāng)x∈[1,2]時(shí),求函數(shù)y=g(x)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com