日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=.是否存在實(shí)數(shù)p、q、m,使f(x)同時(shí)滿足下列三個(gè)條件:
          ①定義域?yàn)镽的奇函數(shù);
          ②在[1,+∞)上是減函數(shù);
          ③最小值是-1.若存在,求出p、q、m;若不存在,說(shuō)明理由.
          【答案】分析:先利用奇函數(shù)的定義得q=1,且p=-m≠0,再利用復(fù)合函數(shù)法,結(jié)合已知函數(shù)的單調(diào)區(qū)間判斷m>0,從而確定函數(shù)f(x)的單調(diào)區(qū)間,最后結(jié)合單調(diào)性與已知的最小值,推測(cè)只能當(dāng)x=-1時(shí)函數(shù)f(x)取最小值-1,從而解得m的值,進(jìn)而得p、q、m的值
          解答:解:∵f(x)是定義域?yàn)镽的奇函數(shù),
          ∴f(0)=0 即q=0,得q=1
          又f(-x)=-f(x)
          =-
          =,
          即(x2+1)2-p2x2=(x2+1)2-m2x2
          ∴p2=m2
          若p=m,則f(x)=0,不合題意.故p=-m≠0
          ∴f(x)=
          由f(x)在[1,+∞)上是減函數(shù),
          x≠0時(shí),令g(x)==1-=1-
          在[1,+∞)上遞增,在(-∞,-1)也遞增,只有m>0時(shí),在[1,+∞)上g(x)遞增,從而f(x)遞減.
          即m>0時(shí)函數(shù)f(x)在(-∞,-1)上為減函數(shù),在(-1,0)上為增函數(shù),在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù)
          ∴x=-1時(shí),在(-∞,-1]上取得最大值-2,此時(shí)由f(x)的最小值為-1得g(x)的最大值為3.
          ∴1-=3    得m=1,從而p=-1
          綜上可知,存在p=-1,q=1,m=1.
          點(diǎn)評(píng):本題考查了奇函數(shù)的定義及其應(yīng)用,復(fù)合函數(shù)法判斷函數(shù)的單調(diào)性,并利用單調(diào)性求函數(shù)最值的方法,邏輯推理能力和運(yùn)算能力
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•河西區(qū)一模)已知f(x)=ax-lnx,x∈(0,e],g(x)=
          lnx
          x
          ,其中e是自然常數(shù),a∈R.
          (Ⅰ)討論a=1時(shí),f(x)的單調(diào)性、極值;
          (Ⅱ)求證:當(dāng)a=1時(shí),f(x)>g(x)+
          1
          2
          ;是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax3+bx2+cx+d是定義在R上的函數(shù),其A,B,C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且 f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
          (1)求 
          ba
          的取值范圍;
          (2)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得 f(x)在點(diǎn)M的切線斜率為3b?求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;
          (3)求|AC|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax-lnx,a∈R
          (Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在點(diǎn)(1,f(x))處的切線方程;
          (Ⅱ)若f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;
          (Ⅲ)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=log
          1
          3
          x2+px+q
          x2+mx+1
          .是否存在實(shí)數(shù)p、q、m,使f(x)同時(shí)滿足下列三個(gè)條件:
          ①定義域?yàn)镽的奇函數(shù);
          ②在[1,+∞)上是減函數(shù);
          ③最小值是-1.若存在,求出p、q、m;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=
          2x2+a
          x
          ,且f(1)=3,
          (1)試求a的值,并證明f(x)在[
          2
          2
          ,+∞)上單調(diào)遞增.
          (2)設(shè)關(guān)于x的方程f(x)=x+b的兩根為x1,x2,試問(wèn)是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意的b∈[2,
          13
          ]及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案