日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

           如圖,在正四棱柱ABCD-A1B1C1D1中,E、F分別是AB1、BC1的中點,則以下結論中不成立的是(    )

          A. EF與BB1垂直            B. EF與BD垂直

          C. EF與CD異面             D. EF與A1C1異面

           

          【答案】

          D

          【解析】解:連B1C,則B1C交BC1于F且F為BC1中點,三角

          形B1AC中EF//AC,所以EF∥平面ABCD,而B1B⊥面ABCD,

          所以EF與BB1垂直;又AC⊥BD,所以EF與BD垂直,EF與CD異面.

          由EF//AC,AC∥A1C1得EF∥A1C1

          故選D.

           

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網如圖,在正四棱柱ABCD-A1B1C1D1中,已知AA1=4,AB=2,E是棱CC1上的一個動點.
          (Ⅰ)求證:BE∥平面AA1D1D;
          (Ⅱ)當CE=1時,求二面角B-ED-C的大。
          (Ⅲ)當CE等于何值時,A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網如圖,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),側棱AA′=
          3
          ,AB=
          2
          ,則二面角A′-BD-A的大小為( 。
          A、30°B、45°
          C、60°D、90°

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•青島一模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
          2
          a
          ,E為CC1的中點,AC∩BD=O.
          (Ⅰ) 證明:OE∥平面ABC1
          (Ⅱ)證明:A1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=A(x0,y0)AB=2,點E、M分別為A1B、C1C的中點.
          (Ⅰ)求證:EM∥平面A1B1C1D1;
          (Ⅱ)求幾何體B-CME的體積.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2009•宜昌模擬)如圖,在正四棱柱ABCD-A1B1C1D1 中,AB=BC=1,AA1=2.過頂點D1在空間作直線l,使l與直線AC和BC1所成的角都等于60°,這樣的直線l最多可作(  )

          查看答案和解析>>

          同步練習冊答案