已知正△ABC的頂點(diǎn)A在平面α上,頂點(diǎn)B、C在平面α的同一側(cè),D為BC的中點(diǎn),若△ABC在平面α上的投影是以A為直角頂點(diǎn)的三角形,則直線(xiàn)AD與平面α所成角的正弦值的范圍為 .
【答案】
分析:根據(jù)題意,作圖,設(shè)正三角形的邊長(zhǎng)為1,設(shè)出B,C到面的距離分別為a,b,,則DG的長(zhǎng)度為兩者和的一半,通過(guò)解直角三角形用a,b表示出DG,得出sinα的表達(dá)式后,再根據(jù)條件,利用函數(shù)、不等式知識(shí)研究其最值.
解答:
解:設(shè)正△ABC邊長(zhǎng)為1,則線(xiàn)段AD=

設(shè)B,C到平面α距離分別為a=BE,b=CF,
則D到平面α距離為hDG=

射影三角形兩直角邊的平方分別為1-a
2,1-b
2,
設(shè)線(xiàn)段BC射影長(zhǎng)為c,則1-a
2+1-b
2=c
2,(1)
又線(xiàn)段AD射影長(zhǎng)為

,
所以(

)
2+

=AD
2=

,(2)
由(1)(2)聯(lián)立解得 ab=

,
所以sinα=

=

=

≥

=

=

,當(dāng)a=b=

時(shí)等號(hào)成立.
此時(shí)BC與α平行.
令函數(shù)f(a)=

,0<a<1,根據(jù)B,C關(guān)于D的對(duì)稱(chēng)性,不妨研究

≤a<1的情形.
由于函數(shù)f′(a)=1-

=

當(dāng)

≤a<1時(shí),f′(a)>0,
所以f(a)在(

1)上單調(diào)遞增,當(dāng)a趨近于1時(shí),f(a)趨近于1+

=

.,
sinα趨近于

所以sinα的取值范圍為

故答案為:
點(diǎn)評(píng):本題考查線(xiàn)面角的大小度量,考查空間想象、計(jì)算、推理論證能力.以及建立數(shù)學(xué)模型,解決數(shù)學(xué)模型的能力.