日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)已知橢圓的離心率為,右焦點也是拋物線的焦點。     

            (1)求橢圓方程;

            (2)若直線相交于、兩點。

          ①若,求直線的方程;

          ②若動點滿足,問動點的軌跡能否與橢圓存在公共點?若存在,求出點的坐標(biāo);若不存在,說明理由。

              


          解析:

          (1)根據(jù),即,據(jù),故,

          所以所求的橢圓方程是。(3分)

             (2)①當(dāng)直線的斜率為時,檢驗知。設(shè),

          根據(jù)

          設(shè)直線,代入橢圓方程得,

          ,得,

          代入,即,

          解得,故直線的方程是。  (8分)

          ②問題等價于是不是在橢圓上存在點使得成立。

          當(dāng)直線是斜率為時,可以驗證不存在這樣的點,

          故設(shè)直線方程為。(9分)

          用①的設(shè)法,點點的坐標(biāo)為,

          若點在橢圓上,則,

          ,

          又點在橢圓上,故,

          上式即,即,

          由①知

          ,

          代入

          解得,即。(12分)

          當(dāng)時,,

          ;

          當(dāng)時,,

          。

          上存在點使成立,

          即動點的軌跡與橢圓存在公共點,

          公共點的坐標(biāo)是。(14分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)已知向量 ,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)已知,且以下命題都為真命題:

          命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

          命題 存在復(fù)數(shù)同時滿足.

          求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分14分)已知函數(shù)

          (1)若,求x的值;

          (2)若對于恒成立,求實數(shù)m的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

          (本題滿分14分)

          已知橢圓的離心率為,過坐標(biāo)原點且斜率為的直線相交于、,

          ⑴求、的值;

          ⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

          ((本題滿分14分)

          已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

          (1)當(dāng)x=2時,求證:BD⊥EG ;

          (2)若以F、B、C、D為頂點的三棱錐的體積記為

          的最大值;

          (3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.

           

          查看答案和解析>>

          同步練習(xí)冊答案