在平面直角坐標(biāo)系中,已知
分別是橢圓
的左、右焦點(diǎn),橢圓
與拋物線
有一個(gè)公共的焦點(diǎn),且過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
相交于
、
兩點(diǎn),若
(
為坐標(biāo)原點(diǎn)),試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
(Ⅰ) (Ⅱ) 直線
與圓
相切
解析試題分析:(Ⅰ) 由題意得 ,又
,結(jié)合
,可解得
的值,從而得橢圓的標(biāo)準(zhǔn)方程.(Ⅱ)設(shè)
,則
,當(dāng)直線與
軸垂直時(shí),由橢圓的對(duì)稱性易求
兩點(diǎn)的坐標(biāo),并判斷直線
與圓
是否相切.當(dāng)直線
的不與
軸垂直時(shí),可設(shè)其方程為
,與橢圓方程聯(lián)立方程組
消法
得:
,
,結(jié)合
,可得
與
的關(guān)系,由此可以判斷與該直線與圓
的位置關(guān)系.
試題解析:解(Ⅰ)由已知得,由題意得 ,又
, 2分
消去可得,
,解得
或
(舍去),則
,
所以橢圓的方程為
. 4分
(Ⅱ)結(jié)論:直線與圓
相切.
證明:由題意可知,直線不過坐標(biāo)原點(diǎn),設(shè)
的坐標(biāo)分別為
(ⅰ)當(dāng)直線軸時(shí),直線
的方程為
且
則
解得,故直線
的方程為
,
因此,點(diǎn)到直線
的距離為
,又圓
的圓心為
,
半徑 所以直線
與圓
相切 7分
(ⅱ)當(dāng)直線不垂直于
軸時(shí),
設(shè)直線的方程為
,聯(lián)立直線和橢圓方程消去
得;
得 ,
,故
,
即① 10分
又圓的圓心為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:
=1(a>b>0)的離心率e=
,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,橢圓的的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點(diǎn),若點(diǎn)M(
, 0),求證
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線:
.
(1)若曲線是焦點(diǎn)在
軸上的橢圓,求
的取值范圍;
(2)設(shè),過點(diǎn)
的直線
與曲線
交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
為直角,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知線段MN的兩個(gè)端點(diǎn)M、N分別在軸、
軸上滑動(dòng),且
,點(diǎn)P在線段MN上,滿足
,記點(diǎn)P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關(guān)系;
(2)當(dāng)時(shí),設(shè)A、B是曲線W與
軸、
軸的正半軸的交點(diǎn),過原點(diǎn)的直線與曲線W交于C、D兩點(diǎn),其中C在第一象限,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為
,右焦點(diǎn)為(
,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點(diǎn)且斜率為k的直線與橢圓交于點(diǎn)A(xl,y1),B(x2,y2),若, 求斜率k是的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知過點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為
,試求直線
的方程;
(3)記,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、
是過拋物線
焦點(diǎn)
的兩條弦,且其焦點(diǎn)
,
,點(diǎn)
為
軸上一點(diǎn),記
,其中
為銳角.
(1)求拋物線方程;
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com