日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)已知,

          (1)若f(x)在處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;

          (2)如右圖所示,若函數(shù)的圖象在連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表達(dá)式直接回答)

          (3)利用(2)證明:函數(shù)y=g(x)圖象上任意兩點(diǎn)的連線斜率不小于2e-4.

          (Ⅰ) 單調(diào)增區(qū)間為: (Ⅱ) (Ⅲ)略


          解析:

          :(1),…1分

          依題意,有,即  .…2分

          ,. 令,4分從而f(x)的單調(diào)增區(qū)間為:; 5分

          (2);…8分

          (3),…9分

          ……10分

          ………12分

          由(2)知,對于函數(shù)y=g(x)圖象上任意兩點(diǎn)A、B,在A、B之間一定存在一點(diǎn),使得,又,故有,證畢.………14分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)已知,且以下命題都為真命題:

          命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

          命題 存在復(fù)數(shù)同時滿足.

          求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分14分)已知函數(shù)

          (1)若,求x的值;

          (2)若對于恒成立,求實(shí)數(shù)m的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

          (本題滿分14分)

          已知橢圓的離心率為,過坐標(biāo)原點(diǎn)且斜率為的直線相交于、,

          ⑴求、的值;

          ⑵若動圓與橢圓和直線都沒有公共點(diǎn),試求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

          ((本題滿分14分)

          已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

          (1)當(dāng)x=2時,求證:BD⊥EG ;

          (2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為

          的最大值;

          (3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.

           

          查看答案和解析>>

          同步練習(xí)冊答案