日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項均為正數(shù)的數(shù)列{an}滿足a=,an=an-1+,其中n=1,2,3,….
          (1)求a1和a2的值;
          (2)求證:;
          (3)求證:
          【答案】分析:(1)根據(jù)遞推關系an=an-1+,即可求出a1和a2的值;
          (2)利用放縮法可得,然后兩邊同時除以anan-1即可得到結論;
          (3)根據(jù)(2)可得an<n,從而,即,,而,從而,∴,即可證得結論.
          解答:解:(1)∵,

          (2)∵an-an-1=>0,
          ,∴
          (3)
          ,
          ∴an<n.





          ,∴,∴
          綜上所述,
          點評:本題主要考查了數(shù)列的遞推關系,以及數(shù)列與不等式的綜合運用,同時考查了計算能力,屬于難題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數(shù)學公式數(shù)學公式的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:青島二模 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經綸中學)(解析版) 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年高考復習方案配套課標版月考數(shù)學試卷(二)(解析版) 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          同步練習冊答案