日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】從某企業(yè)生產(chǎn)的產(chǎn)品中抽取1000件測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得到頻率分布直方圖如圖所示.

          (Ⅰ)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).

          (Ⅱ)由頻率分布直方圖可以認為這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,δ2),其中μ近似為樣本平均數(shù),δ2近似為樣本方差s2.

          利用該正態(tài)分布,求P(175.6<Z<224.4);

          ②某用戶從該企業(yè)購買了100件這種產(chǎn)品,估計其中質(zhì)量指標(biāo)值位于區(qū)間(175.6,224.4)的產(chǎn)品件數(shù).(精確到個位)

          附: ≈12.2,若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,

          P(μ-2δ<Z<μ+2δ)=0.9544

          【答案】(Ⅰ);(Ⅱ)①0.9544,②95件.

          【解析】試題分析:Ⅰ)運用離散型隨機變量的期望和方差公式,即可求出;
          ①由(1)知,從而求出,即可得出結(jié)論;
          ②由①知,一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間(175.6,224.4)的概率為0.9544即可估算.

          試題解析:

          (Ⅰ)

          =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,

          s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.

          (Ⅱ)①由(Ⅰ)知,Z~N(200,150),從而

          P(175.6<Z<224.4)=P(200-2×12.2<Z<200+2×12.2)=0.9544.

          ②由①知,一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間(175.6,224.4)的概率為0.9544, 用戶從該企業(yè)購買了100件這種產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(175.6,224.4)的產(chǎn)品件數(shù)為100×0.9544 95 (件)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左焦點為,其左、右頂點為、,橢圓與軸正半軸的交點為,的外接圓的圓心在直線上.

          I)求橢圓的方程;

          II)已知直線,是橢圓上的動點,,垂足為,是否存在點,使得為等腰三角形?若存在,求出點的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù):

          2

          4

          5

          6

          8

          30

          40

          60

          50

          70

          (1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關(guān)還是負相關(guān)?

          (2)請根據(jù)上表提供的數(shù)據(jù),求回歸直線方程;

          (3)據(jù)此估計廣告費用為10時,銷售收入的值.

          (參考公式:,).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)為定義在R上的奇函數(shù).如圖是函數(shù)圖象的一部分,當(dāng)0≤x≤2時,是線段OA;當(dāng)x>2時,圖象是頂點為P(3,4)的拋物線的一部分.

          (1)在圖中的直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;

          (2)求函數(shù)f(x)在[2,+∞)上的解析式;

          (3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機構(gòu)為了了解大學(xué)生患有頸椎病是否與長期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機的對入院的50名大學(xué)生進行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:

          未過度使用

          過度使用

          合計

          未患頸椎病

          15

          5

          20

          患頸椎病

          10

          20

          30

          合計

          25

          25

          50

          (1)是否有99.5%的把握認為大學(xué)生患頸錐病與長期過度使用電子產(chǎn)品有關(guān)?

          (2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

          參考數(shù)據(jù)與公式:

          P(K2≥k)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函數(shù),求函數(shù)f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時,求函數(shù)上的最大值;

          (2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

          (3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當(dāng)時,車流速度是車流密度x的一次函數(shù).

          當(dāng)時,求函數(shù)的表達式.

          當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1/小時).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊答案