日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•寶山區(qū)模擬)已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14,
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)通過(guò)bn=
          Sn
          n+c
          構(gòu)造一個(gè)新的數(shù)列{bn},求非零常數(shù)c,使{bn}也為等差數(shù)列;
          (3)對(duì)于(2)中符合條件的數(shù)列{bn},求f(n)=
          bn
          (n+2010)•bn+1
          (n∈N*)
          的最大值.
          分析:(1)由已知中等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為sn,且滿足a2a3=45,a1+a4=14,我們構(gòu)造出關(guān)于首項(xiàng)和公差的方程,解方程求出首項(xiàng)和公差,即可得到數(shù)列{an}的通項(xiàng)公式.
          (2)根據(jù)(1)的結(jié)論,可得到sn的表達(dá)式,再根據(jù)bn=
          Sn
          n+c
          可得數(shù)列{bn}的前3項(xiàng),根據(jù){bn}也是等差數(shù)列,構(gòu)造關(guān)于b的方程,即可求出非零常數(shù)c的值.
          (3)根據(jù)(2)可得f(n)═
          n
          (n+2010)(n+1)
          =
          1
          n+
          2010
          n
          +2011
          但對(duì)于n+
          2010
          n
          不能用基本不等式因?yàn)榈忍?hào)成立的條件是n2=2010但由于n為正整數(shù)這是不可能的因此需比較與
          2010
          鄰近的兩個(gè)正整數(shù)44,45所對(duì)應(yīng)的44+
          2010
          44
          和55+
          2010
          55
          的大小就可得出f(n)的最大值.
          解答:解::(1){an}為等差數(shù)列,所以,a1+a4=a2+a3=14
          又a2a3=45所以a2,a3是方程x2-14x+45=0的兩實(shí)根,公差d>0,
          ∴a2<a3∴a2=5,a3=9
          ∴a1+d=5,a1+2d=9
          ∴a1=1,d=4
          ∴an=4n-3
          (2)由(1)知sn=n(2n-1)
          bn=
          Sn
          n+c
          =
          n(2n-1)
          n+c

          ∴b1=11+c,b2=62+c,b3=153+c
          又∵{bn}也是等差數(shù)列
          ∴b1+b3=2b2
          即  2•(62+c)=11+c+153+c,解得 c=-
          1
          2
          或c=0(舍去)
          ∴bn=2n是等差數(shù)列,故 c=-
          1
          2

          (3)∵f(n)=
          bn
          (n+2010)•bn+1
          (n∈N*)
          =
          n
          (n+2010)(n+1)
          =
          1
          n+
          2010
          n
          +2011
          且44+
          2010
          44
          >55+
          2010
          55

          ∴f(n)≤
          9
          18906

          故f(n)有最大值且最大值為
          9
          18906
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是等差數(shù)列的通項(xiàng)公式,其中求等差數(shù)列的通項(xiàng)公式時(shí),根據(jù)已知構(gòu)造出關(guān)于首項(xiàng)和公差的方程,是最常用的辦法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•寶山區(qū)模擬)函數(shù)f(x)=-x2+3x-1,x∈[3,5]的最小值為
          -11
          -11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•寶山區(qū)模擬)設(shè)m.n∈R,給出下列命題:
          (1)m<n<0⇒m2<n2(2)ma2<na2⇒m<n(3)
          m
          n
          <a,⇒ma<na
          ,(4)m<n<0,⇒
          n
          m
          <1

          其中正確的命題有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•寶山區(qū)模擬)設(shè)F1、F2分別為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),設(shè)橢圓C上的點(diǎn)A(1,
          3
          2
          )到F1、F2兩點(diǎn)距離之和等于4.
          (1)寫(xiě)出橢圓C的方程;
          (2)設(shè)點(diǎn)K是橢圓上的動(dòng)點(diǎn),求 線段F1K的中點(diǎn)的軌跡方程;
          (3)求定點(diǎn)P(m,0)(m>0)到橢圓C上點(diǎn)的距離的最小值d(m),并求當(dāng)最小值為1時(shí)m值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•寶山區(qū)模擬)如果直線x+y+a=0與圓x2+(y+
          2
          )2=1
          有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
          [0,2
          2
          ]
          [0,2
          2
          ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•寶山區(qū)模擬)已知數(shù)列{an}滿足a1=1,a2=-2,an+2=-
          1an
          (n∈N*)
          ,則該數(shù)列前26項(xiàng)的和為
          -10
          -10

          查看答案和解析>>

          同步練習(xí)冊(cè)答案