日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖所示,四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60°,在四邊形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
          (1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)B,P的坐標(biāo);
          (2)求異面直線PA與BC所成角的余弦值.
          分析:(1)以D為原點(diǎn),射線DA,DC,DP分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系D-xyz,求出點(diǎn)B,P的坐標(biāo)即可;
          (2)先求異面直線PA與BC所在向量的坐標(biāo),再根據(jù)向量的夾角公式求出所成角.
          解答:精英家教網(wǎng)解:(1)如圖所示,以D為原點(diǎn),射線DA,DC,DP分別為x,y,z軸的正方向,
          建立空間直角坐標(biāo)系D-xyz.
          ∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,
          ∴A(2,0,0),C(0,1,0),B(2,4,0),
          由PD⊥平面ABCD,得∠PAD為PA與平面ABCD所成的角,
          ∴∠PAD=60°.
          在Rt△PAD中,由AD=2,得PD=2
          3

          ∴P(0,0,2
          3
          ).
          (2)∵=(2,0,-2
          3
          ),
          =(-2,-3,0),
          ∴cos<PA,BC>=
          2×(-2)+0×(-3)+(-2
          3
          )×0
          4
          13
          =-
          13
          13
          ,
          所以PA與BC所成角的余弦值為
          13
          13
          點(diǎn)評(píng):本小題主要考查異面直線所成的角、平面與平面垂直、坐標(biāo)運(yùn)算等基礎(chǔ)知識(shí),考查空間想象能力,運(yùn)算能力和推理論證能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
          (Ⅰ)求證:平面PDE⊥平面PAC;
          (Ⅱ)求二面角C-PD-E的大;
          (Ⅲ)求點(diǎn)B到平面PDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是一個(gè)矩形,AB=3.AD=1.又PA⊥AB,PA=4,
          ∠PAD=60°.求:
          (1)四棱錐P-ABCD的體積.
          (2)二面角P-BC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
          (1)求線段PD的長(zhǎng);
          (2)若PC=
          11
          R
          ,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•煙臺(tái)一模)如圖所示,四棱錐P-ABCD中,ABCD為正方形,PA⊥AD,E,F(xiàn),G分別是線段PA,PD,CD的中點(diǎn).
          求證:
          (1)BC∥平面EFG;
          (2)平面EFG⊥平面PAB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),PA=AD=AB=1.
          (1)證明:EB∥平面PAD;
          (2)證明:BE⊥平面PDC;
          (3)求三棱錐B-PDC的體積V.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案