日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在實(shí)數(shù)集R上的函數(shù)f(x),同時(shí)滿足以下三個(gè)條件:
          ①f(-1)=2;②x<0時(shí),f(x)>1;③對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)f(y);
          (1)求f(0),f(-4)的值; 
          (2)判斷函數(shù)f(x)的單調(diào)性,并求出不等式f(-4x2)f(10x)≥
          116
          的解集.
          分析:(1)令x=-1,y=0可求得f(0)=1,又f(-1)=2,進(jìn)一步可求得f(-2)=4,于是可求得f(-4)的值;
          (2)f(0)=f[x+(-x)]=f(x)f(-x)=1⇒f(-x)=
          1
          f(x)
          ,設(shè)x1<x2,通過(guò)證明
          f(x1)
          f(x2)
          >1證得f(x1)>f(x2),f(x)在R上是單調(diào)遞減函數(shù),再逆用條件f(x+y)=f(x)f(y),結(jié)合已知可知f(-4x2+10x)≥f(4),最后利用f(x)是R的減函數(shù),脫掉“f”,解不等式-4x2+10x≤4,即可得到答案.
          解答:解:(1)f(-1+0)=f(-1)f(0),
          ∴f(0)=1,又f(-1)=2,
          ∴f(-2)=f(-1-1)=f2(-1)=4,
          f(-4)=f(-2-2)=f2(-2)=16;
          (2)∵f(0)=f[x+(-x)]=f(x)f(-x)=1,
          ∴f(-x)=
          1
          f(x)
          ,
          任取x1<x2
          f(x1)
          f(x2)
          =f(x1)f(-x2)=f(x1-x2)>1,
          ∴f(x1)>f(x2),f(x)在R上是單調(diào)遞減函數(shù).
          ∴f(4)f(-4)=1⇒f(4)=
          1
          f(-4)
          =
          1
          16
          ,
          即f(-4x2+10x)≥f(4).
          又∵f(x)是R的減函數(shù),
          ∴-4x2+10x≤4,
          解得:x≤
          1
          2
          或x≥2,
          ∴原不等式的解集為{x|x≤
          1
          2
          或x≥2}.
          點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法的應(yīng)用,突出函數(shù)的單調(diào)性的判定與轉(zhuǎn)化思想、方程思想的綜合應(yīng)用,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),則不等式f(1)>f(log2x)的解集為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          23、已知定義在實(shí)數(shù)集R上的函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),滿足兩個(gè)條件:①對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
          (1)求函數(shù)的f(x)的表達(dá)式;
          (2)對(duì)任意x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4|x1-x2|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)的圖象是拋物線的一部分,且該拋物線經(jīng)過(guò)點(diǎn)(1,0)、(3,0)和(0,3).
          (1)求出f(x)的解析式;
          (2)寫出f(x)的單調(diào)區(qū)間;
          (3)已知集合A={(x,y)|y=f(x)},B={(x,y)|y=t,x∈R,t∈R},若A∩B有4個(gè)元素,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足:(1)f(-x)=f(x);(2)f(4+x)=f(x);若當(dāng) x∈[0,2]時(shí),f(x)=-x2+1,則當(dāng)x∈[-6,-4]時(shí),f(x)等于( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案