日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)y=3x-2的圖像上。

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m。

           

          【答案】

          (I)。(II)滿足要求的最小整數(shù)m為10。

          【解析】本題考查數(shù)列與不等式的綜合,綜合性強(qiáng),難度較大.易錯(cuò)點(diǎn)是基礎(chǔ)知識(shí)不牢固,不會(huì)運(yùn)用數(shù)列知識(shí)進(jìn)行等價(jià)轉(zhuǎn)化轉(zhuǎn)化.解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.

          1)設(shè)二次函數(shù)f(x)=ax2+bx.f'(x)=2ax+b,由2a=6b=-2,知f(x)=3x2-2x,由(n,Sn)在y=3x2-2x上,知Sn=3n2-2n.由此能求出數(shù)列{an}的通項(xiàng)公式.

          (2)由,使得對(duì)所有都成立,則m>20Tn恒成立.由此能求出所有n∈N*都成立的m的范圍.

          解:(I)依題意得,。

          當(dāng)n≥2時(shí),a;

          當(dāng)n=1時(shí),×-2×1-1-6×1-5

          所以。

          (II)由(I)得,

          =。

          因此,使得成立的m必須滿足,即m≥10,故滿足要求的最小整數(shù)m為10。

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          1
          a2
          ,
          1
          a4
          成等比數(shù)列.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
          (Ⅱ)記An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,Bn=
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n-1
          ,當(dāng)n≥2時(shí),試比較An與Bn的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知等差數(shù)列{an}的首項(xiàng)為a(a∈R,a≠0).設(shè)數(shù)列的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n都有
          a2n
          an
          =
          4n-1
          2n-1

          (1)求數(shù)列{an}的通項(xiàng)公式及Sn;
          (2)是否存在正整數(shù)n和k,使得Sn,Sn+1,Sn+k成等比數(shù)列?若存在,求出n和k的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)為4,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          ,
          1
          a2
          1
          a4
          成等比數(shù)列.
          (1)求數(shù)列{an}的通項(xiàng)公式an及Sn;
          (2)記An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,Bn=
          1
          a1
          +
          1
          a2
          +
          1
          a22
          +…+
          1
          a2n-1
          ,當(dāng)n≥2時(shí),試比較An與Bn的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=a,a∈N*,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
          1
          a1
          ,
          1
          a2
          ,
          1
          a4
          成等比數(shù)列.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)An=
          1
          S1
          +
          1
          S2
          +
          1
          S3
          +…+
          1
          Sn
          ,若A2011=
          2011
          2012
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆廣西省桂林中學(xué)高三11月月考數(shù)學(xué)文卷 題型:解答題

          (本小題滿分12分)設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;
          (Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案