日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)= ,x∈R,a∈R.
          (1)a=1時,求證:f(x)在區(qū)間(﹣∞,0)上為單調(diào)增函數(shù);
          (2)當(dāng)方程f(x)=3有解時,求a的取值范圍.

          【答案】
          (1)證明:a=1時,f(x)=

          x<0時,f(x)=

          令x1<x2<0,

          則f(x1)﹣f(x2)= = ,

          ∵x1<x2<0,

          ∴(1﹣x1)(1﹣x2)>0,x1﹣x2<0,

          ∴f(x1)<f(x2),

          ∴f(x)在區(qū)間(﹣∞,0)上為單調(diào)增函數(shù)


          (2)解:由f(x)= =3,

          得:ax=3|x|+2,

          畫出函數(shù)y=ax和y=3|x|+2的圖象,如圖示:

          結(jié)合圖象,a>3或a<﹣3.


          【解析】(1)求出f(x)的解析式,根據(jù)函數(shù)單調(diào)性的定義證明即可;(2)問題轉(zhuǎn)化為函數(shù)y=ax和y=3|x|+2有交點,從而求出a的范圍即可.
          【考點精析】利用函數(shù)單調(diào)性的判斷方法對題目進(jìn)行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】本市某玩具生產(chǎn)公司根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), 三種玩具共100個,且種玩具至少生產(chǎn)20個,每天生產(chǎn)時間不超過10小時,已知生產(chǎn)這些玩具每個所需工時(分鐘)和所獲利潤如表:

          玩具名稱

          工時(分鐘)

          5

          7

          4

          利潤(元)

          5

          6

          3

          (Ⅰ)用每天生產(chǎn)種玩具個數(shù)種玩具表示每天的利潤(元);

          (Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,多面體是由三棱柱截去一部分后而成, 的中點.

          (Ⅰ)若上,且的中點,求證:直線//平面

          (Ⅱ) 若平面, , 求點到面的距離;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解方程ln(2x+1)=ln(x2﹣2);
          求函數(shù)f(x)=( 2x+2×( x(x≤﹣1)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓經(jīng)過點,且離心率為.

          (1)求橢圓的方程;

          (2)設(shè)點軸上的射影為點,過點的直線與橢圓相交于, 兩點,且,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2+2bx+5(b∈R).
          (1)若b=2,試解不等式f(x)<10;
          (2)若f(x)在區(qū)間[﹣4,﹣2]上的最小值為﹣11,試求b的值;
          (3)若|f(x)﹣5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=ax+(k﹣1)ax(a>且a≠1)是定義域為R的奇函數(shù).
          (1)求k值;
          (2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
          (3)若f(1)= ,設(shè)g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知),定義.

          (1)求函數(shù)的極值

          (2)若,且存在使,求實數(shù)的取值范圍;

          (3)若,試討論函數(shù))的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), .

          (Ⅰ)若,求在點處的切線方程;

          (Ⅱ)討論函數(shù)的單調(diào)性;

          (Ⅲ)若存在兩個極值點,求的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案