【題目】已知雙曲線的兩頂點分別為
,
,
為雙曲線的一個焦點,
為虛軸的一個端點,若在線段
(不含端點)上存在兩點
,
,使得
,則雙曲線的漸近線斜率的平方的取值范圍是( )
A.B.
C.D.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,
平面
,
,
,
,
,
,
是
的中點,
在線段
上,且滿足
.
(1)求證: 平面
;
(2)求二面角的余弦值;
(3)在線段上是否存在點
,使得
與平面
所成角的余弦值是
,若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若射線(
)與直線
和曲線
分別交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,若橢圓的長軸長等于
的直徑,且
,
成等差數(shù)列
(Ⅰ)求橢圓的方程;
(Ⅱ)設、
是橢圓
上不同的兩點,線段
的垂直平分線
交
軸于點
,試求點
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在
的范圍內,規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中
構成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調查所得的頻率視為概率,現(xiàn)從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數(shù)為,求
的分布列及數(shù)學期望.
附:,其中
.
.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學自制了一套數(shù)學實驗模型,該模型三視圖如圖所示.模型內置一個與其各個面都相切的球,該模型及其內球在同一方向有開口裝置.實驗的時候,隨機往模型中投擲大小相等,形狀相同的玻璃球,通過計算落在球內的玻璃球數(shù)量,來估算圓周率的近似值.已知某次實驗中,某同學一次投擲了個玻璃球,請你估算落在球內的玻璃球數(shù)量(其中
)( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷,定價為1000元/件.
(1)設日銷售40個零件的概率為,記5天中恰有2天銷售40個零件的概率為
,寫出
關于
的函數(shù)關系式,并求
極大值點
.
(2)試銷結束后統(tǒng)計得到該4S店這30內的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 |
其中,有兩個數(shù)據(jù)未給出.試銷結束后,這款零件正式上市,每件的定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有55件,批發(fā)價為550元/件;小箱每箱有40件,批發(fā)價為600元/件,以這30天統(tǒng)計的各日銷售量的頻率作為試銷后各日銷售量發(fā)生的概率.該4S店決定每天批發(fā)兩箱,若同時批發(fā)大箱和小箱,則先銷售小箱內的零件,同時根據(jù)公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉給該公司的另一下屬4S店,假設日銷售量為80件的概率為,其中
為(1)中
的極大值點.
(i)設該4S店批發(fā)兩大箱,當天這款零件的利潤為隨機變量;批發(fā)兩小箱,當天這款零件的利潤為隨機變量
,求
和
;
(ii)以日利潤的數(shù)學期望作為決策依據(jù),該4S店每天應該按什么方案批發(fā)零件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com